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Abstract 

Biotherapy targets molecules that alter the immune response. It involves a plethora of organisms known to alter 
the course of myriad diseases and ailments. Many of these diseases can be life-threatening to the humans and ani-
mals, and exhibit resistance to available antimicrobial medications. To address such ailments, traditional and mod-
ernized therapies that target specific molecules responsible for altering the immune response are currently being 
explored. Such therapies utilize various organisms that are known to impact the progression of numerous diseases 
and disorders. Diseases caused by certain organisms can also alter the courses or outcomes of other diseases. Bio-
therapies such as helminth therapy, maggot debridement therapy, and hirudotherapy use parasites (roundworms 
and flatworms), arthropods (maggots), and leeches (annelids), respectively, as potential biological therapeutic 
sources to treat autoimmune and other chronic diseases. Where conventional medicine fails, these traditional-turned-
modern alternative therapies can serve to boost the health prospects of patients who are vulnerable to the misery 
and pain inflicted by their ailments. Patients dealing with these circumstances are prevalent in developed countries, 
where there is enormous market potential for any novel alternative treatments discovered. In this review, we provide 
a brief outlook on the mechanisms of action of these biotherapies, and summarize their roles in human and veteri-
nary medicine.
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Introduction
Biotherapy, also known as biological therapy or bio-
logical response modification, is a traditional-turned-
modern concept of using living cells, tissues, or whole 
organism as a prophylactic/therapeutic measure to 
modulate immunological responses. Animal-assisted 
therapies  encompassing phages, helminths, arthropods, 
annelids, and vertebrates are the disciples of biotherapy; 
such organisms have  been shown to alter the pathways 
of several incurable diseases. The prime motive of such 
therapies is to mask the pathogenicity of the disease and 
regulate its pathway without causing undue pressure on 
the host’s immune system [1]. Advances in molecular 

biology and genetic engineering have driven the devel-
opment and use of biologicals, such as recombinant pro-
teins, cytokines, and  chimeric monoclonal antibodies, 
to alter the courses of diseases in patients with erratic 
responses to conventional treatment alone [1]. Such bio-
logicals in synergy with chemotherapeutics have been 
used extensively in the treatment and management of 
immune-mediated disorders and, to some extent, in 
wound care [2]. Parasites, as unwelcome tenants to their 
hosts, are an important biological source. At low levels, 
they  are beneficial boosters of the immune system [3], 
producing excretions and secretions  (ES) that  can aid 
in wound healing [4]. The spectrum and mode of action 
of parasitic diseases are nearly identical in humans and 
animals; this similarity can serve as an early sign of envi-
ronmental hazard, indicating the need for public health 
intervention [5]. In this review, we focused on the ben-
eficial interactions of parasites with their human and ani-
mal hosts, exploring the use of parasites as a therapeutic 
source in human and veterinary medicine (Fig. 1). With 
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the  increasing problem of drug resistance, alternative 
traditional therapies are essential to address various ail-
ments. The identification and application of novel candi-
date ES in animal and human trials may provide insights 
into their roles in mitigating autoimmune diseases  and 
allergies, and managing chronic wounds.

Helminth therapy
Humans have complex relationship with many helminth 
parasites, namely the nemathelminths (roundworms) 
and platyhelminths (cestodes and trematodes), which 
have effectively co-adapted with their respective hosts 
by regulating the  host’s immune response. Interestingly, 
among human hosts, those of  pre-reproductive age are 
the perfect targets for helminths. Unfortunately, in the 
absence of clinical manifestations, young hosts are not 
often administered anti-helminthic treatments, thus typi-
cally leading prolonged chronic infection. Over time such 
close-knit conditions tend to lead to parasitic tamper-
ing with the host immune system in one of two ways: (1) 
selective pressure on genes responsible for regulating 
cytokine expression levels [6]; or (2) evasion of the host’s 
immune system through a series of immunomodulatory 
mechanisms [3]. During this process, such parasites inad-
vertently suppress autoimmune diseases. This protective 

phenomenon is supported by a number of hypotheses 
(e.g., hygiene hypothesis, biodiversity hypothesis, and 
biome depletion theory) that all point to an inverse rela-
tionship between the parasitic infection and the occur-
rence of a chronic inflammatory disease in the host [7]. 
However, synergistic advancements in technologies 
and  medical facilities have reduced the colonization 
of parasitic populations, especially in developed nations, 
and have coincided with increased incidences of allergic 
and autoimmune infections. Such illnesses can be pre-
vented by helminthic  manipulation of the host immune 
system.

Host immune modulation by helminths
The  immune system comprises a variety of cells, 
organs, and factors that carry out the surveillance and 
elimination of pathogenic organisms. The entry of 
pathogens is recognized by Toll-like receptors (TLRs), 
a  type of pattern recognition receptors (PRRs) that 
identify both pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patterns 
(DAMPs) [8]. TLRs expressed by various cells, includ-
ing granulocytes, agranulocytes, macrophages, mast 
cells, natural killer cells, dendritic cells, and  fibro-
blasts, generate effective innate immune responses [9]. 

Fig. 1 Pictorial representation of various therapies that utilize parasites to cure livestock diseases
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Different cell  types express different groups of TLRs, 
depending on the structure, composition, and  immu-
nogenic response of the pathogen, and the  recogni-
tion of PAMPs and DAMPs [10]. TLR activation leads 
to the recruitment of certain cellular moieties that 
protect and repair the damaged tissues by releas-
ing inflammatory cytokines. However, uncontrolled 
expression of TLRs  can lead to upregulation of the 
pro-inflammatory cytokines (e.g., interleukin-6 (IL-6), 
IL-12, IL-17, tumour necrosis factor-α  (TNF-α) and 
interferon-γ (IFN-γ)), chemokines, and type 1 IFN, 
which is responsible for  the progression of autoim-
mune diseases [8]. This overexpression can be curbed 
by helminths. An experiment conducted by Pineda and 
co-workers [11] demonstrated that ES-62, a glycopro-
tein secreted by the helminth Acanthocheilonema vitae, 
causes segregation and suppressed signalling of TLRs 
and IL-33,  a proallergic alarmin cytokine. In another 
study, a recombinant F12 secretory molecule of the 
liver fluke Fasciola hepatica was found to inhibit pro-
inflammatory cytokine production through suppres-
sion of macrophage activation mediated by TLRs (2, 4, 
5 and 8) [12]. Similarly, the human blood fluke Schisto-
soma mansoni releases cathepsin B1, which inactivates 
MyD88-independent pathways to suppress the produc-
tion of TLR3 and TLR4, thus modulating the T helper 
cell 2 (Th2) response [13].

Generally, Th1, Th17, and Th2 responses, as key 
components of  CD4+ T cell subsets, provide protec-
tion against intracellular pathogens (bacteria  and pro-
tozoa), autoimmunity, and extracellular pathogens 
(helminths  and ectoparasites), respectively. Individu-
als with autoimmune infections show an elevated Th1/
Th17 immune response, with an upregulation of pro-
inflammatory cytokines [14]. These cytokines assist 
neutrophils and macrophages in neutralizing their tar-
gets; however, an exaggerated Th1/Th17 response may 
be responsible for the  destruction of healthy tissue 
[15]. Such responses can be modulated in individuals 
harbouring a  helminth infection. Helminths instigate 
the  Th2-type immune response, whereby producing 
IL-4, IL-5, IL-9, IL-10 and IL-13 [14].  Two of these 
cytokines, IL-4 and IL-5, mediate the growth and differ-
entiation of plasma B cells, promote eosinophilic infil-
tration, regulates the production of immunoglobulin E 
(IgE), tuft cells, and mucus, and impact  mastocytosis; 
however an uncontrolled response can pave the way for 
allergic disorders [6]. IL-10, a potent anti-inflamma-
tory cytokine, along with the  suppressive activities of 
regulatory T cells (Tregs) and B cells (Bregs), activated 
macrophages, and dendritic cells, help to curb acti-
vated Th1 and Th2 immune responses [16]. In a mouse 
model experiment with Heligmosomoides polygyrus, 

the  IL-10+  FOXP3+ Treg population was maintained 
by IL-10+ Bregs, suggesting that the role of Bregs is not 
overshadowed by subsets of T-cells [17] (Fig. 2).

Therapeutic interventions with helminths
Humans
Used as a therapeutic tool for immunity-related ailments, 
including type 1 diabetes, multiple sclerosis, inflamma-
tory bowel disease, rheumatoid arthritis, asthma, eczema, 
and systemic lupus erythematosus, helminth-based treat-
ments may involve specific ES components or the whole 
parasite. Scientists worldwide have aimed to enhance 
helminth-derived products to cure or alleviate the suffer-
ing of immunocompromised patients [6] through experi-
ments on animal models [18–20] and human clinical 
trials [21–23]. Unsurprisingly, while helminths have been 
widely tested in animal model experiments (Tables 1 and 
2), few have progressed to  human clinical trials. This is 
because certain laboratory helminths, such as Nippos-
trongylus brasiliensis and H. polygyrus, are known for 
migrating to sanctuary sites and causing chronic pulmo-
nary disorders  in animal models, casting doubt on their 
safety for clinical settings [24]. Notably, three nematodes 
and one cestode have been widely exploited in clinical tri-
als and used by several self-medicating  individuals, who 
have provided feedback to physicians involved in practis-
ing helminth therapy and their suppliers [25]. The eggs of 
the  swine whipworm Trichuris suis have been used pri-
marily for the treatment of inflammatory bowel diseases 
(e.g., ulcerative colitis and Crohn’s disease) [22], while 
the larvae of the human hookworm Necator americanus 
have been shown to ameliorate the symptoms induced by 
inflammatory bowel disease [26] and allergic rhinitis [27] 
in human clinical trials. The human whipworm Trichuris 
trichiura exerts immunomodulatory effects that  have 
been studied in autism, allergies, and asthma [28], while 
cysticercoids of the rat tapeworm Hymenolepis diminuta 
have been utilized to treat neurological disorders includ-
ing multiple sclerosis [29]. The success of such trials 
has been challenged by certain drawbacks related to the 
parasites themselves, including pathogenic potential, 
aberrant migration to sanctuary sites [30], re-infection, 
increased host  susceptibility to bacterial infections [31], 
compromised immunoregulation in response to cancer-
ous agents [6], and unpremeditated transmission of other 
pathogens [25]. Compared with T. trichiura, H. diminuta, 
and N. americanus, production of T. suis is more expen-
sive, owing to its requirements for replication in pigs, 
isolation of infected ova under specific laboratory condi-
tions, and the additional cost of recurrent re-colonization 
every 2 weeks [28].

While  helminthiasis remains a problem in less eco-
nomically developed countries, autoimmune diseases are 
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on the rise in more developed countries. In places with 
adequate funding and  infrastructure, large numbers of 
experiments have been conducted  using helminths in 
murine models. Similar studies in insect models  would 
be beneficial. Drosophila melanogaster is an ideal insect 
model for such  studies because of  its short life cycle, 
good biotic potential, relatively simple body structure, 
amenability to genetic manipulations, and exemption 
from ethical approval. The cellular immune response of 
the fruit fly  is mediated by three categories of haemo-
cytes, namely plasmocytes (phagocytotic moieties), crys-
tal cells (melanizing foreign antigens and wound repair), 
and lamellocytes (pathogen encapsulation) [63]. These 
insects also have antimicrobial peptides for opsonizing 
and phagocytosing microbes. Recently, axenic nematodes 
such as Steinernema carpocapsae and Heterorhabditis 
bacteriophora have been used to infect insects, expand-
ing our knowledge of host-parasite relationships [64]. 
Apart from insects, zebrafish and their transparent coun-
terparts are being considered as a potential model to 

study the immune response to parasites such as H. poly-
gyrus [64, 65].

Because many patients are disgusted by the idea of 
being treated with a live parasite, efforts are being made 
to identify and isolate helminthic molecules with immu-
nomodulatory potential [66]. Several such  molecules 
have been documented [15, 37, 42, 48, 55], but none have 
been administered in human trials [6].

Animals
The use of helminths to treat autoimmune and allergic 
ailments in animals is still in its  infancy. Currently, it is 
unclear whether helminths can be used to treat autoim-
mune diseases in animals as effectively as in their human 
counterparts. There is evidence that the removal of hel-
minths may disturb the equine bacterial microbiota, 
paving the  way for inflammatory conditions [67]. Com-
mensal bacteria form a part of the  animal gut environ-
ment at birth, and their interactions with helminths can 
change the microbiota composition, thereby influencing 
the courses of several diseases [68]. Furthermore, these 

Fig. 2 Host immune modulation in response to helminth infection
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bacteria regulate type 2 immune responses via Tregs [69], 
inhibiting the  actions of pro-inflammatory cytokines. 
Such gut microbiota-related activities can reduce the 
risks of allergic and inflammatory conditions [70, 71]. 
Toxocara canis and Ancylostoma caninum ES antigens 
have been shown to regulate the  canine immune sys-
tem by modulating  Foxp3high  T cells. This results in an 
increase in  CD8+ IL-10+ T cells, ultimately preventing 
polyclonal T-cell proliferation and dendritic cell matu-
ration [72] and  leading to a skewed Th2 response. Such 
excretory products are also  known to improve wound 
healing in pets [73]. Similarly, thioredoxin peroxidase 
present in the  ES antigens of Cysticercus cellulosae was 
found to elevate levels of  CD4+  CD25+  Foxp3+ Tregs in 
the piglets, leading to an upregulation of IL-4 and IL-10 
levels  and  consequent downregulation  of the Th1/Th17 
response [74]. Such experiments shed light on the mech-
anism  of  parasitic evasion, but also reveal possibilities 
for using ES antigens to suppress the expression of aller-
gic and autoimmune diseases in pets and  farm animals. 
However, it is up to farm owners and pet parents to vol-
unteer for such treatments.

Maggot debridement therapy (MDT)
MDT, also known as maggot therapy, larval therapy, lar-
val debridement therapy, biosurgery, biodebridement 
and wound myiasis is a method entailing the application 
of sterile medical-grade live larvae of Lucilia (Phaenicia) 
sericata (green bottle fly) onto a wound in a controlled 
environment. Briefly, MDT is a form of aseptically con-
trolled therapeutic wound myiasis [75]. In nature, flies lay 
eggs on carrion and wounds, where they hatch, feed, and 
moult to form three larval stages (instar) known as mag-
gots [76]. Metamorphosis (pupae and adult) also occurs 
in the wound  environment. This type of necrophagous 
behaviour has long  been exploited in the treatment of 
chronic and necrotic wounds [75, 77].

First instar maggots are very active feeders [78]. 
Mechanically, they work their magic via spicules that 
scrape away cellular debris or necrotic tissue. They also 
have modified mandibles called “mouth hooks” that are 
used  for locomotion and raking the unhealthy tissues 
[79], but are not involved in tissue consumption [80]. 
Effective debridement also helps to eliminate the foul 
smell associated with these wounds. Although different 
methods of debridement are currently  available, includ-
ing surgical, autolytic (hydrogels and hydrocolloids), 
enzymatic (proteolytic enzymes), mechanical (wet, dry, 
or impregnated gauge), and biological (larval) [81], bio-
logical debridement is the fastest, and features almost 
negligible live tissue involvement [82].

Role of larval ES
While crawling over wounds,  maggots secrete and 
excrete  extracorporeal digestive enzymes  and  alimen-
tary secretions that penetrate and liquefy the  necrotic 
tissue, enabling them to ingest it [83]. The digestive 
secretions of maggots encompass a diverse array of com-
ponents. These include enzymatic substances, such as 
trypsin and chymotrypsin (specifically LCTa and LCTb), 
leucin  aminopeptidase, and carboxypeptidase A and B. 
The secretions also  contain collagenases, glutathione, 
and sulfhydryl radicals. Serine  proteases are present, 
along with an aspartyl proteinase and an exopeptidase 
resembling matrix metalloproteinases. The composition 
is further complemented by calcium carbonate, urea, 
and allantoin [84–86]. Larval trypsin and chymotrypsin 
are highly resistant to degradation by endogenous wound 
inhibitors [87]. The actions of matrix metalloproteases on 
the wound release ammonia, which increases the wound 
pH and activates proteases that ultimately degrade com-
ponents of the extracellular matrix, such as collagen 
types I and III, fibronectin, and laminin [88, 89].

The  beneficial effects  of larval ES on chronic wounds 
are exerted through antimicrobial activity, haemosta-
sis, angiogenesis, cell proliferation, tissue granulation, 
growth factor-mediated promotion of  extracellular 
matrix remodelling, and increased levels of anti-inflam-
matory cytokines [80, 85].

Natural wound healing begins with haemostasis. Plate-
let plugs, in association with the coagulation cascade, 
form an insoluble mesh of fibrin fibres (clot) [90], pre-
venting further bleeding and providing a reservoir of 
growth factors for cell migration [91]. In acute wounds, 
the clot is further degraded via the activation of the ser-
ine protease urokinase plasminogen activator [92]. How-
ever, chronic wounds contain high levels of plasminogen 
activator inhibitor-150, which impairs fibrinolysis and 
thus prevents wound closure [93]. Maggot secretions 
enhance plasmin formation, induce fibrinolysis, break 
down the  fibrin slough that  accumulates in chronic 
wounds, and promote the neovascularization and growth 
of granulation tissue, thus helping the wound to heal 
[93]. An in  vitro study conducted by Kahl et  al. [94] 
showed that larval serine proteases could induce clot-
ting in human plasma and whole blood by surpassing 
fibrinolysis activity. In another study, it was observed that 
L. sericata Jonah chymotrypsin, a recombinant protein 
produced in Escherichia coli, reduced the clotting time in 
human plasma, along with effective digestion of fibronec-
tin, laminin, and collagen IV [95].

Haemostasis is followed by an  inflammatory phase. 
The complement system is an important component 
of the host immune system, which can be activated 
through classical, alternative, or lectin pathways [96]. 
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Inappropriate activation of the complement system can 
prolong the inflammatory phase and prevent wound 
healing. Cazander et al. [97] documented that maggot ES 
can alter the course of complement system by degrad-
ing the complement components C3 and C4. During 
inflammation, neutrophils defend the immune system by 
phagocytosing invading pathogens. This causes increased 
production of hydrogen peroxide, superoxide, and 
hydroxyl radical, and  results in an extended inflamma-
tory period [98]. However, a detailed study designed to 
extrapolate the effect of maggot ES on opsonized zymo-
gen-stimulated and unstimulated neutrophils found that 
there was a significant decrease in the release of  super-
oxide and myeloperoxidase, but only in the  stimulated 
neutrophils [99]. Monocytes are also associated with 
neutrophils during the innate immune response. Once 
infection occurs, they differentiate into pro-inflammatory 
and anti-inflammatory, or pro-angiogenic, macrophages. 
Under chronic infection, pro-inflammatory macrophages 
produce TNF-α, IL-1α, IL-1ß, IL-12, and  macrophage 
migration inhibitory factor, damaging the extracellu-
lar matrix, causing the  inactivation of growth factors, 
and preventing proper wound healing [100, 101]. Anti-
inflammatory macrophages produce IL-10, vascular 
endothelial growth factor (VEGF), and basic fibroblast 
growth factor (bFGF), which promote cell prolifera-
tion and neo-vascularization [100]. Consistently, Li et al. 
[102] and Tellez et al. [103] demonstrated that larval ES 
negatively impacted pro-inflammatory cytokine  lev-
els while upregulating the expression of anti-inflamma-
tory cytokines through a cAMP-mediated process. In 
another study, blowfly larval immunosuppressive protein 
extracted from Lucilia cuprina larvae downregulated 
the mRNA expression levels of  IFN-γ, IL-4, IL-10, and 
IL-13,  reduced mitogen-induced lymphocyte prolifera-
tion, and ameliorated the infection by upregulating the 
expression levels  of anti-inflammatory cytokines TNF-α 
and transforming growth factor β (TGF-β) [104].

The beginning of new tissue formation triggers anti-
inflammatory macrophages to produce pro-angiogenic 
factors (e.g., VEGF and bFGF), which provide oxygen and 
are required to nourish the cellular components involved 
in wound healing [105]. Bexfield et  al. [106] found that 
pro-angiogenic factors  (e.g., l-histidine, 3-guanidinopro-
pionic acid, and l-valinol in the ES of maggots promote 
wound healing through angiogenesis and strengthening 
vascular endothelial migration, but have no effects on 
fibroblasts. Sun et  al. [107] reported increased expres-
sion of VEGF receptor 2 and upregulated production 
of endothelial cells after the  application of larval ES on 
a diabetic foot ulcer in patients. In a mouse experiment, 
fatty acid extracts derived from dried L. sericata larvae 
were applied to cutaneous wounds, and their activities 

were recorded on days 3, 7, and 10 post wound crea-
tion. The extracts promoted wound healing, particularly 
during the inflammatory and granulation formation 
phases. They upregulated VEGFA expression during 
the inflammatory phase, enhancing wound contraction 
in later phases [108]. A recent  study on the activity of 
angiogenesis-related  microRNAs (miRNAs) associated 
with larval ES-treated human umbilical vein endothelial 
cells used  to counter diabetic foot ulcer found upregu-
lated expression of miR18a/19a transcription factors and 
downregulated expression of TSP-1 [109].

The migration of epidermal cells into the wound bed is 
a key step in wound healing. The phosphatidylinositol-
3-kinase (PI3K)-protein kinase B (Akt) pathway  is an 
important regulator of cell migration. Changes in cer-
tain  growth factors trigger PI3K activation, such as loss 
of phosphatase and tensin homolog (PTEN), or increased 
expression of epidermal growth factor receptor (EGFR). 
Once PI3K is activated, it increases VEGF production. 
VEGF binds to receptors on endothelial cells  to activate 
the RAS and PI3K pathways and promote angiogenesis 
and vascular permeability [109, 110].

Extracellular matrix proliferation begins with the 
organization of the cellular components of fibro-
blasts:  fibronectin, elastin, and collagen (type III) [111]. 
Fibroblasts play a central role in granulation tissue for-
mation, along with macrophages, blood vessels, granu-
locytes, chemokines, and cytokines. The extracellular 
matrix components displace fibrin clots with cells  that 
promote re-epithelialization, such as keratinocytes [112]. 
As proliferation progresses, fibroblasts differentiate into 
myofibroblasts, thus entering the remodelling phase. 
Here, type I collagen replaces type III to provide strength 
[113]. Apoptosis of inflammatory cells also occurs, caus-
ing a reduction in cellular content with a  regression 
in blood vasculature. Finally, a scar is formed as wound 
repair concludes [114].

Medicinal maggots and wound therapies
Production and rearing of medicinal maggots
Medicinal maggot production requires the availability of 
laboratory facilities appropriate for research or commer-
cial purposes. Ideally, an insectary for rearing and main-
tenance of colonies requires a constant temperature of 25 
˚C, a relative humidity of 40% to 60%, and 12 h of  light 
per day to ensure uninterrupted egg production, with-
out any possibility of the larvae entering diapause during 
pupariation [115]. Laboratory-reared flies are fed a  spe-
cial diet that includes carbohydrates (honey mixed with 
water and food enriched with sugar) and protein (brew-
er’s yeast, dried milk, agar powder, and liver in pieces) to 
support the maturation of ovaries and oviposition [116]. 
Subsequently, the eggs are disinfected with 0.5% sodium 
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hypochlorite or 3% Lysol®, and the hatched maggots are 
reared on sterile media. Successful disinfection testing is 
followed by quality control assurance, storage, and sched-
uled production activities [117]. Presently, medicinal 
maggots are commercially supplied by BioMonde, Mon-
arch Labs, and the International Biotherapy Society.

MDT in human and veterinary medicine
In humans, MDT has been used to treat a plethora of 
wound infections  involving necrotic, open, non-healing 
chronic, soft tissue, gangrenous, and deep cavity wounds 
[118]. Apart from chronic wounds, acute wounds with 
an immediate need for debridement can also be treated 
with this therapy. MDT is often viewed as a last resort by 
patients who have tried every other available  treatment 
before succumbing to the pain and mental trauma  of 
their unhealed wounds. MDT is a good choice for ulcers, 
except for corneal ulcers, where the wriggling movements 
of the maggots can cause scarring and damage  to deli-
cate eye tissues [119]. Other contraindications include 
advanced life-threatening infections, sterile cavities, ail-
ments involving the bone and tendons, and bleeding 
complications [120]. Given the tendency to value humans 
over animals, MDT has not been applied with the same 
enthusiasm in animals; as such, the indications and ben-
efits of this therapy remain unknown to many veterinar-
ians. There are very few documented reports of MDT in 
veterinary medicine, with most cases involving large 
animals, especially horses; only recently has this therapy 
been used for domestic  pets [121] (Table  3). However, 
the actural  number of treated cases remains unknown. 
Furthermore, the success rate of treatment in veterinary 
medicine is comparatively low, likely because the prob-
ability of animals removing their dressings is high. Other 
limitations of MDT in animals  include the non-availa-
bility of medicinal maggots, timeliness of treatment, and 
cost efficiency [122] (Fig. 3).

Substitution for the green bottle fly
L. sericata, the green bottle  fly known for outstand-
ing safety in MDT, is not available in every geographi-
cal region. Therefore, it is important to identify local fly 
species that can serve as an alternative in larval therapy 
(Table  4). Standards for the selection of medicinal fly 
species include the following: manageable life cycle, ease 
of breeding and maintenance, strictly necrophagous 
feeding,  and no intra-specific competition [140]. Flies 
that tend to exhibit obligatory myiasis should be avoided 
at all costs. Certain fly species (e.g., Lucilia exima) switch 
over an opportunistic parasitic mode under certain 
conditions [141], whereas  others  (e.g.,  Chrysomia albi-
ceps), being necrophagous, switch to cannibalism under 
intense starvation [142].

Before conducting the clinical trials, the mode of action 
and safety of the flies are tested in laboratory animals. 
Trials using safety-tested flies  are conducted in four 
phases, with each phase involving increased participation 
of volunteers (patients with chronic wounds) and strictly 
following ethical guidelines and national norms. Satisfac-
tory maggots are then  commercially bred from reliable 
sources and delivered to hospitals or clinicians [140].

Hirudotherapy
Hirudotherapy or medicinal leech therapy (MLT) is 
a painless procedure that utilizes the salivary secre-
tions of medicinal leeches by allowed to feed on a site of 
infection. While there are several species of medicinal 
leeches, most commonly used species of the genus Hir-
udo  include H. medicinalis, H. asiatica, H. granulose, 
H. verbena and H. orientalis. Leech salivary glands har-
bour several bioactive substances that exert the follow-
ing pharmacological effects: anticoagulation (hirudin, 
destabilase, lefaxin, gelin, new leech protein-1, ghilanten) 
[161–164]; anaesthetization; vasodilation (acetylcho-
line); anti-inflammation (antistasin, eglins, hirustasin, 
and carboxypeptidase inhibition) [164–166]; platelet 
inhibition (saratin, calin, decorsin, apyrase) [161, 165]; 
antimicrobial activity  (destabilase, theromacin, chlo-
ramphenicol, peptide B) [165, 167]; thrombin regulatory 
functions (gelin, hirudin); extracellular matrix degrada-
tion (collagenase, hyaluronidase); and analgesia (guam-
erin, piguamerin, bdellins) [161]. Thess substances have 
been observed to re-establish the vascular permeability 
of organ systems, boost the immune response, decrease 
blood pressure, remove hypoxia, and quash microcircula-
tory problems [168].

Hirudotherapy in human and veterinary medicine
Leeches have been used to cure diseases  since  ancient 
times, with  the first recorded  document dating back to 
1500 B.C. [169]. Several reports have provided insight 
into the mechanisms of action and benefits of leech ther-
apy for treating complicated medical conditions [164, 
170]. Hirudotherapy is most commonly used to treat 
necrotic flaps, post-phlebitic syndrome, haematomas, 
and polycythaemia in plastic and reconstructive surger-
ies  [171, 172]. Surgeries pertaining to the  amputation 
and reattachment of tissues involve anastomoses of tiny 
blood vessels, with the inevitable complication of blood 
accumulation (venous congestion), which can lead to 
thrombosis and ultimately tissue necrosis [173]. Leeches 
applied to the area concerned actively drain excess blood, 
and the anticoagulant effect of the leech saliva promotes 
the oozing of additional blood even after the leeches have 
been removed [173], helping to alleviate venous con-
gestion in affected patients.  Remarkable effects of leech 
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therapy against tumor metastasis and the  associated 
pain have also been noted [174]. Specifically,  ghilanten, 
a potent anticoagulant present in the saliva of Haemen-
teria  ghilianii, possesses antimetastatic activity against 
cancerous  cells  of melanomas, and lung, breast, and 
prostate tumors [169] (Table 5).

Leech therapy can sometimes lead to certain complica-
tions, the most common being infection. The symbiotic 
association between leeches and  the bacterium Aero-
monas hydrophila can cause secondary bacterial infec-
tions in patients undergoing leech therapy, necessitating 
antibiotic treatment [194]. Leech therapy is contrain-
dicated in patients with anaemia, excessive bleeding, 
haemophilia, hypotension, sepsis, allergic reactions, 
and cutaneous conditions (e.g., necrotic ulcers, pruritus, 
cutaneous pseudolymphoma, and allergic dermatitis) 
[172, 195]. Additionally, pregnant and lactating females 
should not undergo such treatment [185].

In veterinary medicine, the indications and contraindi-
cations for leech therapy  are on par with human medi-
cine (Table 5). In animals (horses, dogs, and cats), it has 
mainly been used to salvage venous congestion [185]. 
Some of the common indications for leech therapy 
include neuritis, myositis, ataxia, discopathies, caudal 
equina syndrome, post-surgical scars, and spinal inju-
ries [196]. Recently, the focus has shifted towards the 
treatment of animal protozoal diseases. Hirudo extract 
antigens (HEA) identified  by Al-Sayed and co-workers 
[197] were evaluated for their protective efficacy against 

murine eimeriosis caused by Eimeria papillata [197]. The 
pathogenic effects of Eimeria considerably increase the 
production of nitric oxide and malondialdehyde, result-
ing in oxidative stress [198], while reducing antioxidants 
(e.g.,  superoxide dismutase, glutathione, and catalase), 
leading to increased cellular damage, lipid peroxida-
tion, and apoptosis [199]. These effects are responsible 
for causing inflammation of intestinal cells and hamper-
ing normal digestive mechanisms. Infected mice injected 
with HEA showed downregulated expression of IFN-γ, 
TNF-α, and IL1-ß, and an upregulated expression of 
IL-10 [197]. An upregulated IL-10 response promotes 
goblet cell formation and mucus production, thereby 
forming a protective shield against such infections [200]. 
In addition to HEA, Eglin C has shown promising thera-
peutic effects in curbing E. papillata-induced coccidiosis 
[201]. The authors of these studies suggested that such 
alternative therapies can reduce clinician overdepend-
ence on anticoccidial treatments.

Conclusion and future perspectives
Parasites, considered both  friends and foes, are the 
future of many  alternative therapies. Helminths profi-
ciently manipulate the immune system, inadvertently 
benefiting the host to a certain extent. The plethora of 
complex  immunomodulatory substances (ES antigens) 
released by helminths poses a challenge for human trials, 
although studies in murine models have shown promis-
ing results. Even more daunting is the need to formulate 

Table 3 Case studies of MDT in animals

Species Indications References

Equine Canker, Quittor, Navicular bursa sepsis, Septic arthritis  [123]

Non healing foot ulcer, Chronic digital interphalangeal joint sepsis, Coffin bone rotation  [124]

Suppurative panniculitis  [125]

Osteomyelitis  [126]

Septic navicular bursitis, Chronic laminitis  [127]

Supraspinous bursitis  [128]

Puncture wounds in navicular bursa  [129]

Laceration of limbs, Fistulous withers, Linea alba dehiscence  [130]

Abdominal wound  [131]

Snake bite necrotic wound  [132]

Sarcoid lesions  [133]

Ovine Interdigital skin inflammation (foot rot and foot scald)  [134]

Necrotic wounds in skin  [135]

Canine Pressure ulcer, gunshot wound  [121]

Deep tissue necrotic wounds under footpads  [136]

Necrotic wound  [137]

Traumatic wounds in thoracic limbs  [138]

Feline Fibrosarcoma, multiple bite wounds  [121]

Post-operative infected wound  [139]
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effective dosages of ES products pertaining to helminths 
of human origin, and determine the effectiveness of each 

product  against myriad autoimmune diseases  and  aller-
gies. Analogues of natural immunomodulatory  proteins 

Fig. 3 Therapeutic uses of maggots for different ailments

Table 4 Candidate fly species and their secretory products and properties utilized in maggot-based therapies

Species Target Peptide / Excretions Secretions (ES) Properties References

Calliphora vicina Alloferon 1 and 2 Antibacterial action against antibiotic resistant E. 
coli, S. aureus, A. baumannii biofilms; antifungal activ-
ity against Candida albicans; antiprotozoal activity 
against Cutaneous Leishmaniosis

 [143–146]

Chrysomia megacephala ES Antibacterial activity, Promotes egg disinfection 
efficiency

 [147]

Cochliomyia macellaria ES Antibacterial activity against Staphylococcus aureus  [148]

Lucilia eximia Lucilin Antibacterial action against Gram negative bacteria, 
potent immunomodulator decreasing production 
of TNF-α

 [149]

Lucilia sericata Lucifensin, Lucimycin Antibacterial action against biofilm, antifungal 
activity, antiprotozoal activity against Cutane-
ous Leishmaniosis, promotes fibroblast migration 
and angiogenesis

 [106, 146, 150, 151]

Lucilia cuprina Lucifensin II Antibacterial action against multidrug resistant 
Staphylococcus aureus

 [152, 153]

ES Virucidal properties against Rift Valley Fever and Cox-
sackie B4 viruses

 [154]

Musca domestica Musca domestica antifungal peptide-1 
(MAF-1)

Potent antifungal activity against Candida albicans  [155]

MAF-1A analogs viz. Mt6 and D-Mt6 Antibacterial action against Acinetobacter baumannii  [156]

Protophormia terraenovae Phormia A and B Antibacterial action against Gram +ve bacteria  [157]

Sarconesiopsis magellanica Sarconesin, Sarconesin II Antibacterial action against Gram +ve and Gram -ve 
bacteria; Antiprotozoal activity against Leishmania 
panamensis

 [158–160]
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in the form of recombinant proteins can be produced for 
use in human clinical trials, with the ultimate purpose of 
developing anthelminthic drugs and vaccines. Helminth 
therapy should be also  tested in farm and companion 
animals.

MDT and hirudotherapy are following in the footsteps 
of helminth therapy. The major challenges of MDT  are 
the identification of appropriate fly species other than L. 
sericata and the implementation of this therapy in human 
trials. While MDT has undoubtedly  been valuable in 
treating chronic ulcers and necrotic wounds in humans 
and animals, the stigma and psychological impacts of 
using live maggots may present obstacles to its broader 
acceptance. Alternatively, with technological advance-
ments and expanding scientific horizons, the future may 
hold the use of recombinant maggot-derived  bioactive 
molecules being used in wound dressings. The same chal-
lenges can also be applied to leeches. There is a general 
lack of public awareness regarding the benefits of MDT 
and leech therapies, which need to be popularized among 
patients, especially in developing countries.

Considering the rising resistance to antimicro-
bial,  anthelmintic,  acaricidal,  and  antiprotozoal drugs, 
which appears to be  irreversible, alternative traditional 
therapies are urgently  needed to counteract myriad ail-
ments. We anticipate that research into parasite-based 
therapies, still in its infancy, holds great promise.
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