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Swine zoonotic viruses: transmission 
and novel diagnostic technology
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Abstract 

Emerging and re-emerging zoonotic viruses pose enormous challenges to public health worldwide. As an important 
livestock animal, pigs play a vital role in the evolution and spread of many zoonotic viruses. Hence, with the develop-
ment of globalization and large-scale intensive farming, close human-pig contact increases the threat of zoonotic 
virus transmission. In this review, to facilitate disease prevention and control efforts, we summarized the preva-
lence and transmission characteristics of zoonotic viruses associated with pigs, such as influenza virus, coronavirus, 
and pseudorabies virus. Additionally, we emphasized novel detection techniques including rapid diagnostic tests, 
biosensor-based detection technology, high-throughput sequencing, and systematic viral epitope scanning. These 
techniques are instrumental in enabling cost-effective and convenient rapid detection procedures for broader imple-
mentation across diverse regions for effective surveillance of viral epidemics. To enhance virus surveillance capabilities 
and improve strategies for disease prevention in pigs, the improvement of our understanding of viral transmission 
modes combined with advancements in diagnostic technology is necessary.
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Introduction
There are several public health security wicked problems 
in the context of rapid global development and change 
[1]. Zoonosis is considered an ongoing wicked prob-
lem for global health [2]. The World Health Organiza-
tion defines zoonosis as an infectious disease that can 
be transmitted naturally between other vertebrate ani-
mals and humans, including those  transmitted directly 
to humans from vertebrate animals and indirectly 
through intermediate hosts, which can lead to emerging 

or re-emerging zoonotic diseases [3–5]. Viral pathogens 
(especially RNA viruses) have always been the main 
emerging infectious disease threat based on their low 
mutation correction ability and high nucleotide substitu-
tion rate, as well as a high capacity to adapt to different 
hosts [6–8].

With the development of animal husbandry and inten-
sive farming, livestock carry eight times more zoonotic 
viruses than wild mammals [9, 10]. It is worth notic-
ing that the latest research suggests that wildlife species 
traded and consumed as food may also play a vital role in 
the transmission of zoonotic diseases [11]. Livestock usu-
ally act as the bridge of epidemiology or an intermediate 
host in the transmission chain, promoting the cross-spe-
cies virus  spread from wild animals to humans [12]. 
Since pigs are important livestock and hog cultivation 
plays a crucial role in the agricultural economy, in past 
epidemics and pandemics, pigs have served as an ampli-
fication, intermediate, and mixing host in the spread of 
swine influenza virus, Japanese encephalitis virus (JEV) 
and Nipah virus (NiV) [13–15]. Some infectious diseases 
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of pigs, such as pseudorabies virus (PRV) and porcine 
deltacoronavirus (PDCoV), have shown the ability to 
spread from pigs to humans [16, 17]. Here we focus on 
zoonotic viruses that have either been widely prevalent 
or have demonstrated potential for interspecies trans-
mission in recent years (Fig. 1). We selected ten common 
viruses that are currently widespread and pose significant 
threats to both livestock farming and public health secu-
rity. Recent researches have suggested that some of these 
viruses may have substantial cross-species transmission 
potential. While there is no direct evidence to confirm 
their ability to spread across species, they nonetheless 
warrant close attention.

At present, all known pathogens may only be the "tip 
of the iceberg" for potential pathogens, so it is nec-
essary to establish a detection system for emerging 
pathogens based on "One Health" principles [18, 19]. 
Over the past few decades, diagnostic techniques have 
developed rapidly, leading to a greatly increased under-
standing of zoonotic viruses [20]. Traditional nucleic 
acid amplification techniques and serological antibody 
detection methods can provide accurate diagnoses at 

different stages of virus infection in various host types. 
The development of rapid diagnostic tests greatly 
reduces the technical and equipment requirements for 
detection and has practical value in areas with poor 
infrastructure or a lack of corresponding technical con-
ditions [21]. Detection technology based on biosen-
sors offers excellent detection performance and easy 
of  operation, but maintaining detection stability in 
complex environments and across various sample types 
remains a challenge [22]. High-throughput next-gen-
eration sequencing (NGS) technology is revolutionary, 
focusing on the entire exposure history of an individ-
ual’s viral pathogens or virome, rather than aiming at 
a few specific pathogens through traditional detection 
methods [23–25].

In this review, we summarize ten zoonotic viruses 
associated with pigs, including their prevalence and 
transmission characteristics. Next, we summarize 
existing novel diagnostic technologies with the aim of 
providing valuable insights for controlling and prevent-
ing epidemics caused by these viruses.

Fig. 1 The discovery timeline and significant epidemic events of ten porcine zoonotic viruses
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Transmission of swine viral zoonoses
Based on epidemiological evidence, the transmission 
directions of ten zoonotic viruses were determined to 
raise awareness of the threat to humans and pigs (Fig. 2). 
Swine play the role of intermediate and amplification 
hosts in the transmission of the following viruses from 
wild or vector animals to humans: NiV, JEV, and Reston 
ebolavirus (REBOV). Norovirus (NoV) is transmitted 
unidirectionally from humans to pigs. Viruses that can 
infect both humans and swine and induce virus shed-
ding can theoretically spread between the two species, 
and the following viruses are thought to demonstrate 
bidirectional transmission according to this principle: 
hepatitis E virus (HEV), rotavirus A (RVA), influenza A 
virus (IAV), and influenza C virus (ICV). Pigs serve as the 
natural hosts for PRV and PDCoV, which have also been 
detected in humans as these viruses undergo mutations 
and their transmission range expands.

Influenza A virus
IAV is an important respiratory pathogen that can trans-
mit bidirectionally between humans and swine [26]. The 
frequent transmission, adaptation, and evolution of dif-
ferent genotypes between different hosts leads to exten-
sive genetic diversity, which constitutes a grave threat 
to swine and human health [27–29]. H1N1, H1N2, and 
H3N2 are the main genotypes that are prevalent in swine 
worldwide, but there is still extensive diversity in the 
hemagglutinin and neuraminidase genes of IAV [26, 30].

Swine influenza virus was first discovered during the 
pandemic from 1918 to 1919, when human and swine 
influenza outbreaks occurred concurrently, suggesting 
that these pandemics were caused by the same pathogen 
[31]. Since influenza virus H1N1 was first isolated from 
pigs in 1931 [32], although there are various prevalent 
subtypes of IAV appeared over the decades, the subtype 

H1N1 still exists in the swine population. There were spo-
radic reports of human swine flu pathology before 2009. 
A review summarized 50 events of zoonotic swine influ-
enza virus infection from 1958 to 2005, most of which 
involved direct contact with swine [33]. A number of 
research studies have demonstrated serological evidence 
of swine influenza virus in people who have had occupa-
tional contact with pigs, such as swine breeders, veteri-
narians or abattoir workers [34, 35]. This result suggests 
frequent interspecies transmission and subclinical infec-
tions of influenza virus in swine are mixed hosts [36]. In 
2009, a variant H1N1pdm09 virus, containing genes from 
both  human influenza and swine influenza viruses was 
discovered in humans and rapidly spread worldwide [37, 
38]. In 2012, it was reported that humans were infected 
with a  variant H3N2 virus in the US. The H3N2 virus 
obtained the matrix (M) gene from the H1N1pdm09 
virus [39]. H1N2 was generated from the reassortment of 
H1N1 and H3N2 [40]. The sustainable spread and evo-
lution of swine influenza virus in human populations 
suggest the need to maintain monitoring programs for 
potential emerging influenza viruses.

Influenza C virus
ICV is another respiratory pathogen from influenza virus 
family and it can cause lower respiratory tract infec-
tion, especially in children under 2  years old [41, 42]. 
Although human is the natural host of ICV, this virus has 
been isolated from naturally infected swine [43, 44]. ICV 
is known to coexist alongside IAV and influenza B virus 
(IBV), and it can also lead to localized epidemics [45]. 
The swine ICV strains were closely related to the human 
ICV strains, suggesting that interspecies transmission 
events have occurred. When swine are exposed to ICV, 
they typically exhibit mild respiratory symptoms and have 
the capability to transmit the virus to other susceptible  

Fig. 2 The transmission directions of ten swine viral zoonoses described in this review. The dashed arrow represents a speculative transmission 
route



Page 4 of 15Zhang et al. One Health Advances             (2025) 3:2 

swine through direct contact [43]. Influenza C viruses 
are similar to influenza A viruses in that they have dif-
ferent subtypes, and there is the possibility of reassort-
ment between different subtypes. Virus phenotypes that 
pose a threat to public health may emerge. Reassort-
ment between strains isolated from pigs and human ICV 
strains in swine is possible due to their ability to spread 
among swine. Swine may also serve as mixers of ICV 
reassortment, similar to their role in the spread of IAV 
[46].

Nipah virus
NiV belongs to the Henipavirus genus, Paramyxoviridae 
family [47]. In 1999, NiV was first isolated in Malaysia in 
humans and pigs, and it was confirmed that swine played 
the role of intermediate host during the simultaneous 
outbreak [48]. The Pteropus fruit bat is regarded as a 
natural reservoir host, and swine are considered to be the 
intermediate and amplifying host of NiV [49].

NiV has many routes of infection, usually, the virus will 
spill over and transmit to other animals such as humans 
and pigs by bats. The outbreak of NiV epidemic hap-
pened in Malaysia from 1998 to 1999. Total 265 cases of 
Nipah encephalitis were recorded, of which 105 (39.6%) 
deaths were reported. Additionally, many infected indi-
viduals were adults who were associated with hog farms. 
The measurement aims to control the NiV outbreak 
including pig culling, prohibition of pig transportation 
and virus surveillance [50, 51]. The NiV Malaysia (NiV-
M) outbreak is related to the encroachment of Pteropus 
fruit bat habitats due to deforestation for hog farms [52]. 
Strains isolated from local bats, pigs and humans were 
detected to contain more than 99% nucleotide homology, 
indicating that limited viral adaptation is necessary for 
transmission between hosts [48, 53, 54]. NiV-M nucleic 
acid was detected in 30% of throat swabs from infected 
animals, so it is speculated that the threat of infected 
humans to pigs is low [55]. After 2010, India had a large 
outbreak of NiV, most of these patients were adults who 
had no direct contact with pigs or other animals, and the 
virus spread mainly among humans. In 2018, when the 
most recent NiV epidemic happened in India was caused 
by human intervention in bat habitats [50, 56]. Since 2001 
the NiV had outbroke, sporadic cases of infection have 
been reported almost every year in Bangladesh, resulting 
in 261 confirmed cases and 199 deaths by 2015 [57, 58]. 
It is worth noticing that NiV-M ultimately causes 40% 
human mortality through the bat-pig-human transmis-
sion path, while NiV Bangladesh is spread from bats to 
humans through contaminated date palm sap, resulting 
in more than 70% mortality [59–61]. It is speculated that 
nucleotide changes in the virus in the intermediate host 
lead to viral attenuation [5].

Reston ebolavirus
REBOV is an RNA virus which belongs to the Filoviri-
dae family, and viruses from this family are associated 
with acute fatal hemorrhagic fever in primates, includ-
ing humans [62]. In 1989, REBOV was discovered in 
cynomolgus macaques transported from the Philippines 
to the US for research purposes [63]. REBOV infection 
can cause death in nonhuman primates, but infection in 
human does not lead to obvious clinical symptoms [64, 
65].

In addition to primates, bats and swine are also consid-
ered hosts of REBOV. Molecular and serological studies 
have shown that REBOV infection exists in a variety of 
bats in Philippines [66]. Since 2008, REBOV has been 
found in pig herds in China and Philippines [62, 67]. 
Full-genome sequencing of REBOV strains from the 
lungs and lymph nodes of pigs collected from three hog 
farms suggested that there was no discernible grouping 
with strains isolated from macaques. Phylogenetic stud-
ies suggest that REBOV has been spread in pigs at almost 
the same time as it has spread in non-human primates 
[62]. The result of experimental REBOV infection in pigs 
shows severe lymphatic and respiratory abnormalities of 
pigs. REBOV is excreted from nasopharyngeal secretions 
and transmits viruses to neighboring pigs [68]. This sug-
gests that infected animals increasing risk of transmission 
to farm workers, veterinarians and slaughterhouse work-
ers. The role of pig in the transmission cycle of REBOV 
remains to be determined, but it is possible for REBOV 
to transmit to pigs in contact with bats or bat faeces and 
then to be subsequently transmitted to humans.

Hepatitis E virus
HEV belongs to the Orthohepevirus genus, Orthohepe-
virinae subfamily, and Hepeviridae family [69]. In 1997, 
HEV was first isolated from domestic pigs in the mid-
western US [70]. To date, HEV has been detected in pig 
herds in almost all around the world [71–74].

Until now, eight major genotypes of HEV (HEV-1 to 
HEV-8) have been discovered and reported. HEV-1 and 
HEV-2 are prevalent in developing regions such as Asia, 
Africa and the Middle East [75]. In these highly endemic 
regions, HEV-1 and HEV-2 are mainly transmitted 
through fecal–oral routes, and drinking water contami-
nated by human feces is considered to be the main cause 
[76–78]. HEV-3 and HEV-4 are pathogenic to humans, 
and Suidae species are possible reservoirs of HEV-3 and 
HEV-4 [79]. In developed countries (the US, Britain and 
France, etc.), HEV-3 and HEV-4 are the main genotypes 
of HEV. In economically developed regions of Asia, the 
characteristic disease pattern involves the  transmission 
of HEV-3 and HEV-4 through animals [80]. In the past 
few decades, China has changed from a pattern with 
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frequent outbreaks of HEV-1 to a low epidemic model of 
sporadic HEV-4 infection. This trend may be the result 
of upgrades to sanitary conditions [81, 82]. Hepatitis 
E caused by HEV-4 infection is now the most common 
among middle-aged men in China. The main risk fac-
tors for HEV-3 and HEV-4 infection are consumption of 
HEV-contaminated food (such as undercooked meat), 
direct  contact with infected animals, or transfusion of 
contaminated blood products [82]. In Europe, eating 
contaminated food is the primary mode of transmission 
of zoonotic HEV infection. Pork products, with or with-
out liver, are generally regarded as the origin of numerous 
human foodborne HEV cases and small-scale outbreaks. 
Pigs are acknowledged as the primary reservoir of the 
zoonotic HEV-3, which is the genotype that most com-
monly found in human cases throughout the EU [83]. 
The ability of HEV to spread from pigs to humans and the 
experimental infection of human HEV in pigs has been 
proven [84, 85].

Norovirus
NoV is an RNA virus belonging to the family Calici-
viridae [86]. Human-associated norovirus (HuNoV) is a 
common cause of acute gastroenteritis [87].

In 1997, the first porcine NoV discovered in Japan was 
classified as GII-11 [88]. At present, NoVs are divided 
into 10 genogroups and 48 genotypes [89]. The current 
consensus is that the GII-11, GII-18, and GII-19 geno-
types infect only pigs, and the genotypes of the GI, GII, 
GIV, GVIII, and GIX are commonly appear in humans 
[87, 90]. NoV shows high genetic diversity and has a wide 
range of hosts, but the GII strains infect humans and 
swine exclusively [86]. In 2007, a strain belonging to the 
GII-4 genotype of HuNoV was found in Canadian swine 
samples, which drew more attention to pigs’ role as virus 
reservoir [87]. Under experimental conditions, HuNoV 
has been observed to replicate in gnotobiotic pigs, and it 
has been proven that recombinant HuNoV-like particles 
can bind to the intestinal epithelium of pigs, suggesting 
that the transmission of NoV can be bidirectional [91, 
92]. Until now, the pathogenic mechanism and transmis-
sion mechanism of NoV in swine, the role of swine as 
hosts in virus maintenance and transmission, the poten-
tial for zoonosis and the recombination ability of porcine 
NoV are still not clear. Continuous virus surveillance and 
research are necessary.

Japanese encephalitis virus
JEV is a zoonotic virus mainly transmitted by Culex 
mosquitoes, with ardeid wading birds as reservoirs 
and swine as important maintenance and amplification 
hosts [93]. Encephalitis caused by JEV infection has a 

high mortality rate and leads to persistent sequelae in 
survivors [94]. JEV is currently geographically distrib-
uted in most parts of the Western Pacific and South-
east Asia. Because of the intensive pig production in 
Southeast Asia and East Asia, swine play a significant 
part in the transmission cycle [95, 96]. Pigs infected by 
JEV usually remain asymptomatic or experience mild 
symptoms, which makes it difficult to notice the spread 
or outbreak in swine [97, 98]. Recent studies have con-
firmed that contact with infected animals directly by 
oral and nasal routes can lead to vector-free transmis-
sion of JEV in pig herds [99]. Vaccination for pig herds 
can reduce the risk of infection in pigs and subsequent 
transmission of the virus to humans. Human cases of 
Japanese encephalitis often originate from spillover 
events during pig epizootics. Pigs not only develop 
viremia, which enables sustained transmission, but also 
exhibit signs of neurotropic and reproductive disease 
[100]. JEV is a persistent public health threat, and the 
lack of effective vector control methods, the geographic 
expansion of mosquitoes, and climate change may 
all facilitate the spread of JEV, indicating the need to 
remain vigilant against the virus [93].

Rotavirus A
RVA is a common diarrhea pathogen that mainly causes 
acute gastroenteritis and diarrhea in children and pig-
lets [101]. Currently, more and more evidence suggests 
the zoonotic potential of RVA [102]. The emerging G9 
and G12 subtypes of human rotavirus may originate 
from swine through genetic recombination, based on 
similar VP7-specific areas of G9 and G12 which are fre-
quently found in piglets [103, 104]. A recent study on 
the sequence analysis of the Indian porcine RVA gene 
revealed that the partial genomic segments (VP7, VP4, 
and NSP4 genes) were highly similar to that of human 
rotavirus strains, suggesting that interspecies trans-
mission may have occurred [105]. The fact that strain 
KCH148 originates from pigs implies the possibility 
of zoonotic transmission, particularly in developing 
countries in Africa where humans are in close contact 
with livestock, including swine. This close proximity 
increases the risk of human-pig transmission [106]. A 
high degree of similarity to porcine strains may suggest 
direct zoonotic transmission, whereas lower similar-
ity could indicate strains of unknown origin or indi-
rect transmission through other human sources [107]. 
Hence, ongoing surveillance of RVA) following the 
principles of "One Health" is crucial. This surveillance 
can provide valuable data for evaluating the effective-
ness of currently available vaccines and their ability to 
protect against diverse strains of RVA [108].
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Pseudorabies virus
PRV is the causative agent for Aujeszky’s disease which 
belongs to the Varicellovirus genus, Alphaherpesvirinae 
subfamily, Herpesviridae family [109]. The natural host of 
PRV is swine. Infection with PRV can lead to neurological 
disease in piglets, while reproductive disorders can occur 
in sows [110]. Previous studies have shown that there are 
frequent recombination events in PRV genomes, which 
may lead to cross-species transmission [111].

PRV is highly contagious, and it can cause a massive 
infection in body secretions and excreta in pig sheds. 
PRV primarily spreads through direct contact but can 
also be transmitted through water, air and contaminated 
fomites. The outbreaks of PRV in pig herds are challeng-
ing to control and cause great economic losses to the hog 
industry [112]. In areas where classical swine fever has 
been successfully eradicated, pseudorabies is regarded 
as the most economically important viral disease for the 
hog industry. There were many reports of human infec-
tions with PRV in recent years, and the number of cases 
has been increasing since 2017 [113]. Differential diagno-
sis should include PRV encephalitis if symptoms associ-
ated with central nervous system (CNS) infection are 
acute or rapidly progressing, especially in patients with 
recent exposure to pigs [114–116]. Current researches 
suggest that PRV infection can cause human illnesses 
such as encephalitis and endophthalmitis with high fever 
persisting. Exposure to infected pigs or contaminated 
material through blood or mucous membranes carries a 
significant risk of PRV infection. This suggests that prac-
titioners should exercise strict self-protection when han-
dling PRV-infected sick and dead pigs.

Porcine deltacoronavirus
PDCoV is a newly identified member of the Deltacoro-
navirus genus, Coronaviridae family [117]. Fecal–oral 
route is the primary route of PDCoV transmission, either 
through direct contact or contact with contaminated 
environments. Infected pigs may exhibit severe diarrhea 
symptoms, and the virus poses an economic and produc-
tion threat to the swine industry. Currently, protocols 
that can effectively prevent and control PDCoV are still in 
research process, and implementing proper biosecurity 
measures is crucial in reducing its transmission [118]. 
The increasing spread of PDCoV in pig population of 
China represents a more pronounced threat to the well-
being of animals and humans. PDCoV infection has been 
reported in 26 provinces across China since it was first 
discovered in Hong Kong in 2012 [119]. The results of 
phylogeographic exploration show that there are frequent 
long-distance dispersal events of PDCoV in China, which 
may involve in human-mediated transmission [120].

Phylogenetic studies have shown that cross-species 
transmission occurs frequently during the evolution of 
coronaviruses (CoVs) and shaped the diversity of CoVs 
[121]. From an epidemiological perspective, the global 
distribution of PDCoV in pigs and its potential for multi-
ple host infections are striking [122, 123]. The first human 
PDCoV case reported in 2021 [124]. Due to the unex-
pected complexity and difficulty of tracing the movement 
of swine and their pathogens on a global scale, the risk 
of PDCoV infecting humans has significantly increased. 
Therefore, there is a need to improve the detection of 
PDCoV.

Novel diagnostic technologies
Globalization and large-scale intensive livestock farm-
ing have increased the risk of emerging and re-emerging 
zoonotic pandemics [125, 126]. The preliminary discov-
ery of the threat of emerging infectious diseases must 
begin at the level of community health services, so it is 
important to establish an effective virus detection net-
work system from local community breeding enterprises 
or health departments to national public health laborato-
ries. The innovation and development of pathogen detec-
tion technology is an important link in the establishment 
of zoonotic comprehensive surveillance system. In addi-
tion to traditional laboratory detection techniques such 
as serological antibody detection and nucleic acid ampli-
fication, some new technologies have provided new ideas 
for pathogen detection as well, such as high-throughput 
NGS and biosensors. Biosensors are analytical devices 
that target biological materials or their derived material, 
typically achieved by integrating biorecognition elements 
and signal transducers [127]. Biosensors are based on 
optics, electrochemistry, and electrochemiluminescence, 
which have been widely studied due to their excellent 
detection performance, portability, and low operating 
threshold [128]. NGS provides comprehensive genomic 
information, detecting a wide range of viruses, including 
unknown and mutant strains, but it is expensive, time-
consuming, and necessitates expertise in data analysis 
and interpretation [129–132]. Each detection technol-
ogy has its advantages, limitations and application sce-
narios (Fig.  3). To select an appropriate virus detection 
technique, factors such as virus characteristics, detection 
requirements, available resources, and time constraints 
need to be considered.

Lateral flow assays
Lateral flow assays (LFAs) play an important role in the 
field of point-of-care tests (POCTs), which are commonly 
employed in the detection of infectious disease patho-
gens, biomarkers and environmental monitoring [133] 
(Fig. 4a). LFAs have the advantages of low cost and quick 
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response time for rapid detection and diagnosis in areas 
with limited resources, but LFAs are usually a qualita-
tive diagnostic test, and the intrinsic single antigen–anti-
body design of conventional LFAs limits its use for single 
pathogen detection [134]. Therefore, under the premise 
of maintaining the advantages of LFAs, there is a demand 
for LFAs technology with higher sensitivity, simultaneous 
detection of multiple pathogens and quantitative analysis.

For conventional LFAs detection, the user will get a 
conclusion based on visual assessment of the staining, 
that is, controlled compounds in the sample reach the 
threshold concentration. At present, there are detection 
tools with quantification of the analyte content in the test 
sample to quantify the LFAs test results [135]. For quan-
titative LFAs based on optical signal analysis, portable 
digital cameras are regarded as convenient tools to obtain 
high-resolution images. In this kind of detector, light 
sources with specific spectral characteristics are used to 
ensure high contrast between the specific staining area 
and the background [136]. This parameter increases with 
increasing dye intensity, and different color channels also 
provide opportunities for multiple detection. Hou’s team 
developed a dual-modality imaging system based on 
smartphones, which can quantitatively measure the color 
or fluorescent tag of the test strip. The device can work 
with white light and ultraviolet light depending on the 
type of label used (color or fluorescence) [137].

Magnetic or superparamagnetic nanoparticles can also 
be used as analytical labels for immunochromatographic 
detection, and the magnetic powder is not affected by 
the colored components in the sample, which prevents 
the background coloring problem in the optical immu-
nochromatographic system [138]. The effectiveness of 
magnetic detection in immunochromatography has been 
proven by a number of biomarker targets, but it has not 
been widely used in pathogen detection. Wang’s team 

built an LFAs method that detects Bacillus anthracis by 
depositing superparamagnetic nanoparticles [139].

Vertical flow assays
The fundamental principle of vertical flow assays (VFAs) 
is similar to that of LFAs, relying on the immobiliza-
tion of capture antibodies on reagent pads for analysis 
(Fig. 4b). In LFAs detection, the detection signal strength 
of the analyte may be reduced when the sample flows 
parallel to the paper surface, and the signal intensity is 
affected by interference at the detection line position 
[140]. VFAs detection equipment typically includes a 
membrane with some immunoreaction spots, where a 
specific antigen, captured antibody, and markers inter-
act to produce a red dot that can be observed with the 
smartphone reader or naked eye [141]. Compared with 
LFAs, VFAs have the advantages of higher detection effi-
ciency, multiple detectability, and reduced false-negative 
rates [134]. Clarke’s team established a detection method 
for hepatitis C biomarkers by coupling surface-enhanced 
Raman spectroscopy (SERS) with VFAs. The limit of 
antibody concentration was as low as 53.1 μg/mL, which 
can be detected by the naked eye by using SERS signals 
[142]. MedMira Inc. has developed multiple VFAs-based 
detection platforms to detect pathogen antigen–antibody 
interactions. For example, MedMira recently developed 
a triple detection method for human immunodeficiency 
virus (HIV), hepatitis B virus, and hepatitis C virus.

Optical biosensors
Surface plasmon resonance (SPR) is a widely used opti-
cal technology used to develop virus detection methods 
by monitoring the refractive index (RI) changes in the 
sensing layer after the binding of target molecules [143] 
(Fig. 4c). The principle is that the electromagnetic (EM) 
resonance of the collective oscillation of free electrons 

Fig. 3 Advantages, limitations, and application scenarios of each detection technology
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Fig. 4 The schematic diagram of the detection technologies introduced in this review. a Lateral flow assays. b Vertical flow assays. c Optical 
biosensor based on surface plasmon resonance. d Electrochemical biosensors. e Electrochemiluminescence biosensors. f Next-generation 
sequencing technology. g Systematic viral epitope scanning
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related to the plasmonic metal dielectric semi-infinite 
interface generates a coupled propagation surface EM 
field. The high sensitivity of this electromagnetic field to 
changes in the dielectric layer RI can be used to design 
SPR-based sensors [144]. Wong’s team developed a 
phase-intensity SPR biosensor for detecting avian influ-
enza  H5N1 antibody, which does not require time-con-
suming phase extraction and interference fringe analysis, 
and its detection limit can reach 193.3 ng/mL [145].

Surface-enhanced fluorescence (SEF) is a phenomenon 
in which plasma nanomaterials enhance the fluorescence 
intensity of fluorophores. When the fluorescent group 
is close to the metal nanostructure, the electrons of the 
fluorophore are coupled with the local plasma electric 
field, which subjects the fluorophore to an enhanced 
electric field and consequently enhances the fluorescence 
intensity [146]. When the distance between the surface 
of the plasma and the fluorophore is 1-10 nm, the non-
radiative localized field of the plasmon dipole can excite 
the fluorophore, which is called Förster resonant energy 
transfer [147]. Hu’s team prepared a novel multifunc-
tional nanosphere (RNs@Au) containing hundreds of RN 
quantum dots and dozens of Au nanoparticles (NPs) as 
reporters, combined with SEF and LFAs to establish a 
method for detecting Ebola virus glycoproteins [148].

SERS technology uses the localized EM field of plas-
monic metallic nanostructures to enhance the Raman 
scattering cross section of Raman-active materials close 
to plasmonic NPs, thus affecting the Raman signal of the 
materials [149]. Tripathi’s team deposited silver NPs on 
a glass coverslip as a substrate for the sensing platform 
and established a JEV antigen detection method based 
on a SERS biosensor, with the limit of detection reaching 
7.6 ng/mL [150].

Electrochemical biosensor
The electrochemical biosensor is distinguished by an 
electrode energy exchanger. Current common electro-
chemical technologies include chronoamperometry, 
square wave voltammetry, differential pulse voltammetry 
(DPV), cyclic voltammetry and electrochemical imped-
ance spectroscopy [151] (Fig.  4d). Diba’s team devel-
oped an electrochemical biosensor for detecting avian 
influenza H5N1 virus. The H5N1-specific DNA aptamer 
was covalently immobilized on a screen-printed carbon 
electrode deposited by gold NPs, the H5N1 protein was 
then adsorbed, and finally, the monoclonal antibody 
labeled with alkaline phosphatase (ALP) was adsorbed 
to form a sandwich complex. The electrocatalytic reac-
tion of surface-bound ALP with 4-amino phenyl phos-
phate causes the current to increase with increasing 
H5N1 protein concentration. DPV is used for detect-
ing current changes, with a detection limit of 100 fM 

[152]. Nidzworski’s team developed an electrochemi-
cal biosensor for the M1 protein of influenza virus. The 
boron-doped diamond (BDD) electrode was treated with 
4-aminobenzoic acid to form a self-assembled monolayer 
(SAM), and then the anti-M1 antibodies were immo-
bilized on the SAM. When the influenza virus M1 pro-
tein was captured on the BDD electrode, the virus was 
detected according to the change in impedance spectros-
copy, and the limit of detection reached 1 fg/mL [153].

Electrochemiluminescence biosensor
Electrochemiluminescence (ECL) is a technology that 
emits light from electrochemically excited ECL emitters 
through effective electron transfer (Fig. 4e). ECL’s lack of 
need for external light sources results in no background 
noise from spontaneous fluorescence of the sample or 
scattered light [154, 155]. Hosseini’s team developed an 
ECL-based biosensor to detect SARS-CoV-2. Au-plated 
glassy carbon electrodes were used as working elec-
trodes, and their surfaces were modified with 3-mercapto 
propionic acid and 11-mercapto undecanoic acid for 
the covalent immobilization of antibodies. Luminol was 
covalently linked to the Au-based nanocomposite, and 
finally, a specific antibody to SARS-CoV-2 was bound 
to the material to ensure the high specificity of the sen-
sor. The detection limit of this detection method reached 
1.93 ng/mL [156].

High‑throughput sequencing
NGS technology is an innovation in the field of genom-
ics that is crucial to improve the understanding and 
research of pathogen transmission and dynamics at ani-
mal-human interfaces [157]. Bioinformatics is an impor-
tant component of high-throughput sequencing (HTS) 
applications, which concentrates on methodologies for 
retrieving, interpreting, and archiving biological infor-
mation obtained from sequencing [158]. The research 
of involving metagenomic analysis combined with HTS 
technology has high requirements for computing power, 
usually involve in the use of various sequence classifica-
tion algorithms to process and analyze millions of reads 
(Fig. 4f ). In the preliminary preparation stage, sampling, 
sample preparation, and enrichment methods seriously 
affect the HTS results. The viral genome sequences in 
the samples are translated into sequencing libraries, and 
clusters are created and sequenced in the HTS system. 
Metagenomic NGS has been used to detect emerging 
pathogens and describe viral diversity in environmental, 
animal and human samples, providing new insights into 
the transmission and prevention of zoonotic diseases 
[159].
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Systematic viral epitope scanning
Systematic viral epitope scanning (VirScan) is a high-
throughput method that combines immunoprecipitation 
and massively parallel DNA sequencing to comprehen-
sively analyze antiviral antibodies (Fig.  4g). The phage 
library displays the proteome-wide peptides of whole 
human viruses. VirScan is a method of exploring the viral 
range of immune responses in a large number of individ-
uals at the epitope level. It is considered as an important 
tool for revealing the impact of host‒virus interactions on 
human health and disease and can be extended to emerg-
ing viruses in the future [160]. Although several studies 
have used this technique to analyze the serological char-
acteristics of specific viruses in humans, cost reduction 
or optimization strategies could further extend this tech-
nique to animal viral serology studies.

Conclusions
Modern molecular and antibody detection techniques 
have made progress in identifying emerging zoonotic 
viruses. The advantages of LFAs and VFAs are that their 
devices are usually thermostable, require no electric-
ity, and have low difficulty of operation, and there are 
more use scenarios in areas where infrastructure and 
resources are scarce [161]. Biosensors based on optics, 
electrochemistry and electrochemiluminescence have the 
advantages of excellent detection performance, portabil-
ity and easy operation [162]. However, the problems of 
high development cost and poor stability of sustainable 
detection equipment need to be further ameliorated. The 
HTS method has significant advantages in virus surveil-
lance and increasing awareness of infectious diseases. 
However, the inference of pathogens based on HTS 
still has limitations [163], the coverage of the pathogen 
database is notably lower than that of other organisms, 
leading to uncertainty in identification and inaccurate 
estimation of pathogen richness [157]. Considering that 
a wide range of swine-associated viruses carry a zoonotic 
transmission risk, it is necessary to further develop diag-
nostic technology with high throughput and sensitivity. 
Similarly, lowering the cost and reducing the operational 
technical requirements of the assay will facilitate initial 
screening to monitor the epidemiology of swine zoonotic 
virus diseases in remote areas.

We believe there is significant potential for advance-
ment in detection technologies in the future. For LFAs, 
VFAs, and biosensor-based detection methods, their key 
advantages lie in ease of use and rapid response times. 
If these technologies can be further developed to detect 
multiple pathogens simultaneously, detection efficiency 
would be substantially enhanced. Moreover, biosen-
sor-based methods still have room for improvement, 

particularly in terms of stability, which will require inno-
vations in materials science and other interdisciplinary 
fields. POCT technologies have broad application poten-
tial, particularly for pathogen monitoring in resource-
limited settings. HTS presents another promising avenue 
for addressing detection challenges. This technology ena-
bles comprehensive genetic analysis of samples. If high-
throughput sequencing devices can be miniaturized and 
made portable, the pathogen genetic database can be 
expanded, and computational models optimized, thereby 
improving data analysis speed. This would facilitate the 
rapid detection of both known and novel pathogens, an 
essential capability given the growing threat of emerg-
ing infectious diseases and the rapid evolution of existing 
pathogens.

With the ongoing expansion of pig farming and pork 
trade, increasing contact between humans and pigs has 
led to the rise of zoonotic viruses that affect both spe-
cies. Some pathogens, such as influenza viruses, have 
already spread between humans and pigs, raising public 
health concerns. Additionally, other coronaviruses, such 
as Deltacoronavirus, have shown potential for cross-spe-
cies transmission between pigs and humans. Research 
and monitoring of zoonotic viruses in the context of 
human-pig coinfections are of utmost importance. Early 
detection and identification of the transmission of these 
pathogens in human and pig populations contribute to 
the implementation of timely and effective preventive 
measures, reducing the spread of outbreaks. Strengthen-
ing capabilities for health surveillance and clinical diag-
nosis, along with improving hygiene standards in pig 
farms and trading facilities, are key measures to mitigate 
the transmission of zoonotic viruses between humans 
and pigs. Overall, in keeping with the concept of "One 
Health", the study of zoonotic viruses in human-pig coin-
fections is an ever-evolving field that requires continuous 
efforts to enhance scientific research and cooperation. 
This is essential to ensure public health safety and protect 
the health of both humans and pigs.
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