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Abstract 

Aquaculture has rapidly developed into one of the most fast-expanding food industries, providing an essential source 
of protein for humanity worldwide. The rapid growth of the aquaculture industry is closely associated with the cru-
cial role of antimicrobials in the prevention and treatment of animal diseases. Nevertheless, the irrational utilization 
of antimicrobials gives rise to the emergence of pathogen resistance, which poses a potential threat to human health 
and environmental sustainability. This issue has garnered considerable attention from international organizations 
and has escalated into a global public health crisis that requires urgent intervention. This paper undertakes a review 
of the sources of antimicrobial resistance in aquaculture, drawing on data from Microbial Browser for Identification 
of Genetic and Genomic Elements (MicroBIGG-E) and related literature. The characteristics and distribution patterns 
of drug resistance genes in pathogenic bacteria of diseased aquatic animals and food-borne bacteria of contami-
nated aquatic products were elaborated in detail. The emergence of resistant aquatic bacteria is not solely attribut-
able to the utilization of antimicrobials in aquaculture, but rather is closely related to human social activities. Diverse 
antimicrobial resistance genes related to tetracyclines, aminoglycosides, β-lactams, quinolones, sulfonamides, 
and amphenicols that coexist in foodborne pathogens might contribute to multidrug resistance in aquaculture. This 
review also evaluates the potential risks of antimicrobial resistance in aquaculture with respect to human health, 
food safety, and ecological balance. Government entities, research institutions, and private companies are adopting 
proactive measures and initiating specific strategies to alleviate the dissemination of antimicrobial resistance, thereby 
enhancing human and animal health as well as ecological sustainability.
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Introduction
Aquaculture represents one of the most promising 
sectors within global food production [1]. In 2022, 
global aquaculture production increased to 185 mil-
lion tons [2]. However, the global aquaculture indus-
try is encountering sustainability challenges, such as 
environmental impacts, disease control, market insta-
bility, and extreme weather events. The transition 
from semi-intensive to intensive farming practices, 
alongside the application of antimicrobial agents for 
disease management, are pivotal factors contributing 
to the increase in aquaculture yield. In aquaculture 
environments, antimicrobials are frequently present at 
concentrations lower than those for therapeutic pur-
poses. This not only enhances the selection pressure 
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for resistant bacteria in animals or the environment to 
screen out resistant bacteria, but might also facilitate 
the transfer of resistance genes among different spe-
cies of bacteria within aquatic ecosystems. It is now 
well documented that antimicrobial resistance genes 
(ARGs) and antimicrobial-resistant bacteria (ARB) 
migrate from aquatic environments to terrestrial eco-
systems, potentially posing risks to human and animal 
health [3].

Antimicrobial resistance (AMR) occurs as a result of 
natural selection; however, the heavy use of antimicro-
bials and other influencing factors of modern human 
life, accelerate the evolution of "silent" or "precur-
sor" resistance genes within bacteria. In addition to 
a small number of bacteria with natural resistance to 
certain drugs, the majority of bacteria develop resist-
ance mainly through changes in target sites, reduction 
of bacterial outer membrane permeability, acquisi-
tion of active efflux systems, and production of inac-
tivated enzymes [4]. These resistance mechanisms do 
not exist independently; instead, the level of bacterial 
resistance is determined by their combined effects. 
Genes that confer resistance spread from environmen-
tal bacteria via mobile genetic elements and are subse-
quently transferred to humans and animals, leading to 
increased abundance, diversity, and mobility of resist-
ant bacteria [5].

Recently, the matter of AMR has drawn the atten-
tion of international organizations to jointly tackle the 
global public health crisis. The United Nations Envi-
ronment Programme (UNEP) lists ARGs as the first of 
six novel environmental pollutants. In 2022, to address 
a variety of health threats, the World Health Organi-
zation (WHO), World Organization for Animal Health 
(WOAH), Food and Agriculture Organization of the 
United Nations (FAO), and UNEP co-issued the "One 
Health" Joint Action Plan. It focuses on zoonotic epi-
demics, food safety risks, AMR, and the environment, 
with the aims of improving human, animal, plant, and 
environmental health while promoting sustainable 
development [6]. Within the framework of the "One 
Health" notion, the problem of AMR in aquaculture 
should also be considered of great importance. In 
this review, we aim to present the sources of AMR in 
aquaculture, detailing the characteristics and distribu-
tion patterns of ARGs in diseased aquatic animals and 
contaminated aquatic products, both domestically and 
internationally. We also describe some of the strate-
gies that have been implemented, and offer additional 
recommendations to alleviate the emergence of AMR 
among aquatic bacterial populations.

Sources of AMR in aquaculture
Antimicrobials used in aquaculture
Since the sulfonamides were introduced for disease con-
trol in the 1940s, significant progress has been made in 
preventing and treating bacterial diseases in fish [7]. By 
the 1950s, other antimicrobial agents in addition to the 
sulfonamides, including tetracyclines, quinolones, and 
aminoglycosides had become widely utilized for treating 
infection and preventing diseases [8]. Despite the use of 
oral feeding and immersion as the most effective admin-
istration methods, the researchers estimated that about 
70–80% of antimicrobials are not absorbed by fish and 
are eventually excreted into aquatic ecosystems via urine 
or feces [9–11]. The irrational utilization of antimicrobi-
als will not only have an impact on the microorganisms 
within the animal body and the environment, but also 
exert huge antibiotic pressure on the microorganisms, 
leading to the rapid development and dissemination 
of AMR within the bacterial community [12]. Previous 
studies have also reported large-scale epidemic infec-
tions caused by pathogens resistant to different classes 
of antibiotics [13–15]. The issue of resistance in aquacul-
ture has also drawn the attention of international organi-
zations. In 2006, a joint meeting of WHO, FAO, and 
WOAH was held to evaluate the consequences related to 
utilitation of antimicrobials agents in aquaculture, high-
lighting the necessity of paying attention to the potential 
risk of ARGs spreading from aquatic animals to humans 
[16].

Wastewater from urban rivers
Traditional aquaculture ponds are open water bodies 
with nearby rivers as the primary source of water. Con-
sequently, urban rivers are considered as important 
reservoirs for ARB and ARGs in aquaculture. With the 
acceleration of urbanization and industrialization, large 
quantities of wastewater from pharmaceutical factories, 
hospitals, and farms are discharged into urban rivers, 
which then become the main carrier for the spread of 
ARGs and ARB [12, 17–19]. Aiming to evaluate AMR in 
China’s Pearl River, Gao et  al. [18] utilized metagenom-
ics to analyze global microbiome data, revealing that the 
types of ARGs and ARB in the water and sediment of the 
Pearl River were more diverse than those in other coun-
tries. Discharge of wastewater from sewage treatment 
plants and landfills drives the epidemic of riverine bacte-
rial resistance, and the levels of resistance among bacte-
rial groups are highly correlated with human and animal 
sources. Das Manas et al. [19] conducted a metagenomic 
analysis of the surface water and sediments of Indian 
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rivers. Their results indicated that ARB in the environ-
ment mainly originated from Enterobacteriaceae, which 
showed multidrug resistance to fluoroquinolones, sul-
fonamides, β-lactams, tetracyclines, aminoglycosides, 
and other drugs. Using isolates from aquatic animals 
and aquacultural environments, several studies have also 
identified clinically significant genes that confer resist-
ance to various drugs, including extended-spectrum 
β-lactamases (ESBLs) [20–22], carbapenem (blaNDM) 
[23–25], colistin (mcr) [26, 27], tigecycline (tet[X]) [28, 
29], vancomycin (vanA) [30, 31], and linezolid (optrA) 
[32, 33]. Although these types of resistance genes are fre-
quently found in patient and hospital wastewater, there 
is concern about their potential spread through rivers to 
nearby ponds. The aquaculture environment may act as a 
reservoir and transmission vector for clinically significant 
resistant pathogens, thereby increasing the threat to pub-
lic health.

Sewage from livestock and poultry farms
In addition to the direct administration of antimicro-
bials, integrated fish farming constitutes another criti-
cal source of AMR in aquaculture. From the 1990s to 
the beginning of this century, a farming model based 
on multi-utilization of livestock, poultry, and aquacul-
ture resources was popular in South China, South and 
Southeast Asia, and Africa, with examples including 
integrated pig-fish and duck/goose-fish farms [34–37]. 
Farmers typically constructed pig houses or duck/goose 
sheds near ponds, utilizing the waste from the livestock 
and poultry as organic fertilizer for fish cultivation [37]. 
By saving breeding space and feed costs, this produc-
tion mode increased the economic benefits of breeding 
and was among the most economically efficient aqua-
culture models in the era of low breeding density and 
limited antibiotic use [37]. However, the expansion of 
large-scale livestock and poultry farming has gradu-
ally exposed the shortcomings of this model. Livestock 
and poultry feces contain antibiotics excreted through 
metabolism, as well as ARB carrying various ARGs. 
Untreated fecal matter that is discharged directly into 
ponds may affect the microbial community of aquatic 
animals and aquaculture water bodies, potentially pol-
luting the ecological environment [12]. In a previous 
study [38], we found that Aeromonas isolated from live-
stock/poultry-fish integrated farms were exhibited sig-
nificantly higher resistance to 13 antibiotics than those 
isolated from non-integrated farms. Furthermore, we 
identified class I integrons carrying diverse gene cas-
settes in resistant Aeromonas isolates from livestock-
fish integrated farms, implying that antibiotic usage 
in livestock farming contributes to the dissemination 
of multidrug resistance in aquaculture [34]. Since the 

enactment of China’s most stringent environmental 
protection legislation in 2017 [39], small-scale pig farms 
in rural areas have been effectively prohibited, and inte-
grated pig-fish farming has gradually decreased. How-
ever, integrated waterfowl-fish farming is still common 
in the Pearl River Delta region of Guangdong province. 
The potential influence of ARB and resistance gene 
pollution caused by this model requires more atten-
tion. The study revealed that total relative abundance 
of ARG subtypes in the samples of duck-fish integrated 
farms were significantly higher than those of freshwater 
single farms, where Enterobacteriaceae was the main 
host source of ARG [40–42].

Foodborne pathogen contamination of aquatic products
Foodborne pathogens can contaminate aquatic prod-
ucts during havesting, transportation, processing, stor-
age, sales and other processes, thereby becoming the 
source of the dissemination of various bacterial dis-
eases, and posing a potential threat to human health 
and safety [43]. Consuming undercooked aquatic prod-
ucts can readily lead to food-borne poisoning, result-
ing in diarrhea, vomiting and fever. Hence, aquatic 
foods are among the products that give rise to food-
borne bacterial diseases worldwide [44]. Bacteria com-
monly present in aquatic food including fresh aquatic 
animals and processed products can be classified 
into three categories: bacteria that naturally coexist 
along with freshwater or marine aquatic animals (e.g., 
Aeromonas spp. and Vibrio spp.); environmental bac-
teria that exist with frozen foods (e.g., Listeria monocy-
togenes); and commensal or opportunistic pathogenic 
bacteria that naturally inhabit in intestines of humans 
or animals (e.g., Escherichia coli, Salmonella enterica, 
Klebsiella pneumoniae, Campylobacter jejuni, and 
Staphylococcus aureus) [44]. The occurrence of AMR 
foodborne pathogens in aquatic products has steadily 
increased worldwide in recent years [32, 43–45]. The 
growing prevalence of S. enterica and E. coli strains 
exhibiting resistance to “last-resort” antibiotics, such 
as imipenem, polymyxin B, and tigecycline, is of great 
concern [25, 26, 28, 44, 46].

Briefly, apart from the use of antimicrobial agents in 
aquaculture, AMR of aquatic bacteria is also closely 
related to human social activities involving families, 
hospitals, pharmaceutical factories, and the farming, 
processing, and transportation of livestock and poultry 
[12, 47]. Antimicrobial agents are extensively utilized in 
human and veterinary medicine, and then introduced 
into the environment via human and animal excretion 
or inadequately treated pharmaceutical waste [12]. 
The environment can facilitate the colonization and 
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infection of hosts by ARB, contributing to the evolution 
and dissemination of both ARB and ARGs [47].

Distribution of ARB and ARGs in aquaculture
Current situation
The intricate origins of AMR in aquaculture highlight 
the diversity and complexity of ARGs. The majority 
of ARGs found in human clinical and terrestrial ani-
mal isolates can also be identified in aquatic animals 
and processed (frozen, dried, smoked, etc.) aquatic 
products [25, 32]. To achieve a comprehensive under-
standing of the genetic information of human clini-
cal, animal, and foodborne pathogens worldwide, 
the National Center for Biotechnology Informa-
tion (NCBI) has developed the Microbial Browser 
for Identification of Genetic and Genomic Elements 
(MicroBIGG-E) (https://​www.​ncbi.​nlm.​nih.​gov/​patho​
gens/​micro​bigge/) [48]. Featuring all bacterial isolates 
and three categories of genes (AMR, stress response, 
and virulence), this tool has become essential for uti-
lizing bacterial genomics to explore and compare the 
global distribution and origin information of vari-
ous genes, and to comprehend the spread of AMR 
worldwide [49]. For this review, we used the follow-
ing terms to search MicroBIGG-E for host sources of 
pathogenic bacteria: "fish," "shrimp/prawn," "crab," 
and "shellfish/clam" as keywords, and "AMR" as filter 
words. We found that, by 30th December 2024, 23,165 
contigs related to drug resistance of aquatic animals 
and products from 75 countries and regions had been 
uploaded, of which 9689 contigs (1977 isolates) were 
from fish, 8923 contigs (1620 isolates) were from 

shrimp, 1925 contigs (263 isolates) were from crabs, 
and 2448 contigs (519 isolates) were from shellfish.

Distribution of ARB in aquaculture
To examine the different host bacteria carrying ARGs in 
various types of aquatic products, records were selected 
through keyword searches of MicroBIGG-E. The results 
showed that 4379 pathogenetic bacteria covering 58 
bacterial taxa were identified in aquatic animals and 
products. The predominant bacterial genera carrying 
ARGs in different aquatic hosts are shown in Fig.  1. 
Overall, the records uploaded to MicroBIGG-E were 
mainly associated with Vibrio spp. (1896 isolates, 43.3%) 
and Salmonella spp. (1382 isolates, 31.6%). Resistant 
isolates of Vibrio spp. were mainly obtained from shell-
fish and shrimp, accounting for 409 isolates (78.8%) 
and 855 isolates (52.8%), respectively. The predominant 
resistant strains isolated from fish were Salmonella spp. 
and Vibrio spp., with 716 isolates (36.2%) and 574 iso-
lates (29.0%), respectively, while those isolated from 
crab were Salmonella spp. and Listeria spp., with 71 iso-
lates (27.0%) and 64 isolates (34.3%), respectively. The 
higher number of resistance records related to Vibrio 
spp. in the database is due to the natural coexistence 
of this species with aquatic animals in aquatic environ-
ments, especially sea and brackish water [50]. In con-
trast, Salmonella spp. do not naturally inhabit aquatic 
environments. The high detection rate of salmonella in 
aquatic products could potentially be ascribed to the 
contamination of offshore waters by human domes-
tic sewage and poor sanitary conditions in the aquatic 
products market. [44].

Fig. 1  Analysis of the primary hosts of antimicrobial resistance genes (ARGs) across various aquatic animals and products based on data 
from Microbial Browser for Identification of Genetic and Genomic Elements (MicroBIGG-E)

https://www.ncbi.nlm.nih.gov/pathogens/microbigge/
https://www.ncbi.nlm.nih.gov/pathogens/microbigge/
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Occurrence of ARGs in pathogens from diseased aquatic 
animals
The growing prevalence of resistant bacterial patho-
gens constitutes a significant challenge for aquaculture, 
restricting the attempts to control diseases in aquatic 
animals [51]. To effectively manage quatic pathogens, it 
is vitally important that we understand the occurrence 
and distribution of their ARGs. The majority of bacte-
rial infections affecting aquatic animals are attributed to 
Vibrio spp., Aeromonas spp., Streptococcus spp., Edwards-
iella piscicida, Photobacterium damselae, and Yersinia 
ruckeri [52]. After filtering for "isolation source," we were 
able to analyze a total of 3699 isolates of the aforemen-
tioned fish and shrimp pathogens for genotypic resistance 

determinants. Although the genomic sequences from 
MicroBIGG-E were limited, we found that these patho-
gens had diverse types of ARGs, with the number varying 
from 1 to 13 types of ARGs in one strain. Table 1 presents 
examples of ARGs identified in typical aquatic pathogens 
from diseased animals. Comparing different pathogenic 
species, the majority of strains of Aeromonas spp., Vibrio 
parahaemolyticus, and P. damselae were found to carry 
more than three classes of ARGs, making them prone to 
contributing to multidrug resistance.

It is well documented that the genus Aeromonas dem-
onstrates resistance to several antimicrobials, suggest-
ing that certain drugs might be ineffective in controlling 
infections caused by some Aeromonas species [22, 34]. 

Table 1  Examples of antimicrobial resistance genes (ARGs) identified in typical aquatic pathogens from diseased animals

Host
(species)

Pathogen Genotype Number of 
resistance genes 
carrying

Isolation source Location Collection year Assembly No.

fish Aeromonas salmo-
nicida

aadA7, ampC, 
aph(3’’)-Ib, aph(6)-
Id, blaCMY-2, blaOXA, 
cphA, floR, mcr-3, 
sul1, sul2, tet(A), 
vat

13 sick fish Canada: New 
Brunswick

2004 GCA_000786805.1

fish Aeromonas dhak-
ensis

ampC, blaOXA, 
cphA, floR3, mcr-3, 
qnrS2, sul1, sul2, 
dfrA1, tet(A), vat

11 kidney, liver Vietnam 2018 GCA_031915045.1

fish Aeromonas veronii aadA1, blaOXA, 
catB3, cphA, dfrB4, 
sul1, tet(A), vat

8 kidney, liver Vietnam 2019 GCA_031914865.1

Fish
(Cyprinus carpio)

Aero-
monas hydrophila

blaOXA, cepH, 
cphA1, mcr-3, 
mph(A), tet(E)

6 liver USA: LA 2019 GCA_021356275.1

Fish
(Tiger grouper)

Vibrio vulnificus varG, catB, tet(35), 
tet(34)

4 diseased fish Thailand: Song-
khla

2012 GCA_039833915.1

Fish
(Epinephelus 
fuscoguttatus)

Vibrio alginolyticus blaCARB, catC, 
tet(35), tet(34)

4 diseased fish Thailand: South-
ern part, Karabi 
province

2013 GCA_026962575.1

freshwater fish Vibrio harveyi blaVHH, tet(35), 
tet(34)

3 brain USA: Florida 2019 GCA_028991555.1

Shrimp
(Penaeus van-
namei)

Vibrio parahaemo-
lyticus

blaCARB-18, blaCTX-

M-14, catC, sul2, 
tet(34), tet(35), 
tet(E)

7 hepatopancreas China: Guang-
dong

2022 GCA_027277845.1

Shrimp
(P. vannamei)

V. harveyi blaVHH, tet(35), 
tet(34)

3 diseased shrimp 
lesion

Mexico 2005 GCA_000259935.1

fish Photobacte-
rium damselae

bla, catA2, qnrS, 
aar-3, aadA16, 
sul1, sul2, dfrA27, 
tet(M), tet(B)

10 / China: Qingdao, 
Shandong

2009 GCA_030169025.1

Fish
(Channa spp.)

Edwardsiella. 
piscicida

ampC, mph(A), 
catA1, catA2, sul1, 
drfA12, tet(D)

7 / / 2019 GCA_030340645.1

Fish
(Salmo salar)

Yersinia ruckeri blaYRC​ 1 / Australia: Tas-
mania

2014 GCA_001883155.1

Fish
(Oreochromis spp.)

Streptococcus 
agalactiae

tet(M) 1 fish organ Malaysia: Kuala 
Lipis

2009 GCA_041728555.1
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According to the MicroBIGG-E database, over 90% of 
Aeromonas isolates from diseased fishes, including Aer-
omonas dhakensis,  Aeromonas hydrophila, Aeromonas 
veronii, and Aeromonas salmonicida, possess ARGs for 
aminoglycosides, β-lactams, tetracyclines, and trimetho-
prim. β-lactam resistance genes with diverse genotypes 
and subtypes are highly prevalent in Aeromonas strains, 
and include oxa, cmy, aqu, mox, cphA, and ampC; some 
of these are regarded as ESBL genes. The production of 
ESBLs by aquatic pathogens may represent failed actions 
of cephalosporins [53]. Interestingly, we also found that 
only Aeromonas strains carried mcr-3, which encodes 
a phosphoethanolamine transferase and contributes 
to colistin resistance. In a previous study, Guo et  al. 
reported that the non-mobile colistin resistance (NMCR) 
determinants NMCR-3, NMCR-4, and NMCR-5 located 
on the chromosomes of Aeromonas are the progenitors of 
mcr-3, mcr-5, and mcr-7 [54]. Aeromonas spp. are exten-
sively distributed in freshwater environments and fresh-
water aquatic animals, indicating that aquaculture may 
facilitate the emergence and dissemination of novel colis-
tin resistance mechanisms in aquatic and terrestrial ani-
mals, thereby posing a potential threat to public health 
and food safety [54, 55].

Another of the most common bacterial diseases that 
affect various marine fish, shrimps, and shellfish is vibri-
osis.  Several species of the Vibrionaceae, including V. 
parahaemolyticus, Vibrio harveyi, Vibrio vulnificus, and 
Vibrio alginolyticus, cause this disease [56]. The frequent 
identification of resistant Vibrio strains has caused sub-
stantial economic losses to farmers around the world. 
Unexpectedly, apart from V. parahaemolyticus, other 
species of Vibrio were found to carry only a few geno-
types of ARGs. Tetracycline resistance genes are the 
predominant class identified in Vibrio strains, among 
which tet(34) and tet(35) are the main genotypes. These 
genes may enhance the activity of efflux pumps, protect 
ribosomes and facilitate the inactivation of microbial 
enzymes in these microorganisms [57]. The catC gene, a 
member of the chloramphenicol acetyltransferase (CAT) 
family, is located on the V. parahaemolyticus chromo-
some, where it confers intrinsic resistance to chloram-
phenicol [58]. We found that over 90% of isolates of V. 
alginolyticus also harbored catC, which was absent in V. 
harveyi and V. vulnificus.

Occurrence of ARGs in foodborne pathogens in aquatic 
products
Aquatic products are irreplaceable components of the 
human diet. Given the aforementioned sources of AMR 
in aquatic products, resistant foodborne pathogens 
such as E. coli, S. enterica, C. jejuni, S. aureus, L. mono-
cytogenes, and Clostridum botulinum pose an alarming 

global and widespread threat to public health [59]. Over 
the past decades, the incidence of resistant foodborne 
pathogens has been constantly increasing worldwide [43, 
44, 59]. In addition, foodborne pathogens that are resist-
ant to several clinically significant antimicrobials desig-
nated for the treatment of multiple drug resistance, such 
as extended-spectrum cephalosporins, fluoroquinolones, 
polymyxins B, tigecycline, vancomycin, and linezolid, 
have also been identified in aquatic products in several 
countries worldwide, which should draw more attention 
and concern. [28, 60–62]. Based on MicroBIGG-E data, 
the resistant foodborne pathogens from aquatic products 
possess diverse types of ARGs, with the number ranging 
from 1 to 26 types in a single strain. Table 2 details some 
of the most frequently detected ARGs alongside their 
respective antibiotic classes, including tetracyclines, ami-
noglycosides, β-lactams, quinolones, sulfonamides, and 
amphenicols. Strains of the Enterobacteriaceae, including 
E. coli, S. enterica and K. pneumoniae, carry more diverse 
genotypes compared with other species, suggesting that 
Enterobacteriaceae may constitute a major reservoir of 
ARGs.

To illustrate the occurrence and distribution of clini-
cally significant ARGs in aquatic products, we utilized 
the MicroBIGG-E database and literature searches of 
Elsevier’s ScienceDirect, PubMed, and Wiley Online 
Library. Table  3 outlines the main clinically significant 
ARGs that were identified in aquatic products. In 2009, 
Indian scientists first reported the identification of the 
NDM-1 gene from a patient. This gene encoded a carbap-
enem enzyme that hydrolyzed most β-lactam [63], and 
has since been reported worldwide, particularly in Enter-
obacteriaceae from various sources. While more than 
60 subtypes of NDM enzymes have been documented, 
only NDM-1 and NDM-5 have been detected in aquatic 
products (Table 3). In addition to Enterobacteriaceae [21, 
25, 64], NDM-1 has been reported in Vibrio spp. [65, 66] 
and Aeromonas spp. [22, 45], whereas NDM-5 is mainly 
identified in E. coli [20, 46] and K. pneumoniae [24, 67] 
(Table 3). Some reports of aquatic products identified as 
carrying blaNDM-1 and sold in supermarkets in Australia 
[66], the USA [25], Canada [64], France [23], and Japan 
[62] were mainly found to originate from Southeast Asia, 
suggesting that this ARG has been widely spread through 
global trading.

In 2016, Chinese scientist Liu YY reported a new colis-
tin resistance gene mcr-1, which was located on the plas-
mid in commensal E. coli from food animals [72]. Its 
transferability has made it difficult to treat clinical infec-
tions of colistin-resistant E. coli. In the MicroBIGG-E 
database and recent literature on colistin-resistant bacte-
ria from aquatic products, mcr-3 was mainly identified in 
Aeromonas spp., whereas mcr-1 was mainly reported in 
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Table 2  Examples of ARGs identified in typical foodborne pathogens from aquatic products

Host Foodborne-
pathogen

Genotype Number of 
resistance 
genes carrying

Isolation source Location Collection year Assembly No.

fish Escherichia coli aac(3)-IId, aadA1, aadA2, 
aadA5, blaEC, blaTEM-1, 
cmlA1, sul3, drfA12, 
dfrA17, estT, floR, lun(F), 
oqxA, oqxB, qnrS1, tet(A), 
tet(X4)

18 / China: Guang-
dong

2021 GCA_032285135.1

shrimp E. coli aadA1, aadA2, aph(3’)-Ia, 
blaEC, blaSHV, blaTEM-1, 
cmlA1, floR, dfrA12, 
dfrA17, estT, lnu(F), qnrS1, 
sul3, tet(A), tet(M), tet(X4)

17 / China: Guang-
dong

2021 GCA_032286305.1

shellfish E. coli aac(6’)-Ib4, aadA1, 
aph(3’’)-Ib, aph(3’)-XV, 
aph(6)-Id, blaACC-1, blaEC, 
blaSHV-12, blaVIM-1, catB2, 
dfrA14, sul1, sul2, mph(A), 
qnrS1

15 / Italy 2016 GCA_002776495.1

crab E. coli rmtB1, aadA1, aadA2, 
blaCTX-M-55, blaEC, blaTEM-1, 
cmlA1, dfrA12, sul3, qnrB7, 
tet(A) 

11 / India: Cochin 2017 GCA_017813585.1

fish Klebsiella pneu-
moniae

aac(3)-IId, aadA16, 
aph(3’)-Ia, aph(3’)-Ib, 
aph(6)-Ic, aph(6)-Id, 
arr-3, blaCTX-M-3, blaDHA-1, 
blaSHV-1, blaTEM-1, ble, 
dfrA27, sul1, sul2, floR, 
fosA, fosA3, mph(A), oqxA, 
oqxB19, qnrB4, qnrB91, 
qnrS1, aac(6’)-Ib-cr5, 
tet(A)

26 / China: Shandong 2019 GCA_028863925.1

shrimp K. pneumoniae aph(3’)-Ia, aph(3’’)-Ib, 
aph(6)-Id, blaLAP-2, 
blaSHV-1, floR, fosA, oqxA, 
oqxB, qnrS1, sul2, tet(A)

12 / China: Shenzhen 2023 GCA_037198215.1

crab K. pneumoniae aac(6’)-Ib3, aph(3’)-Ia, 
blaCTX-M-2, blaKPC-2, 
blaOXA-2, blaSHV-11, 
catA1, fosA, 
mph(A), oqxA, oqxB, sul1

12 / Brazil: Sao Vicente 2017 GCA_013002785.1

shellfish K. pneumoniae blaSHV-60, fosA, oqxA10, 
oqxB19

4 / India: Cochin 2019 GCA_017814795.1

fish Salmonella 
enterica

aac(3)-IVa, aadA1, aadA2, 
aph(3’)-Ia, aph(4’)-Ia, 
arr-3, blaOXA-1, bleO, catB3, 
cmlA1, dfrA12, sul1, sul2, 
sul3, floR, aac(6’)-Ib-cr, 
oqxA, oqxB, tet(B)

19 frozen eel fish USA 2015 GCA_005899085.1

shellfish S. enterica aac(3)-IVa, aadA1, aadA2, 
aph(3’)-Ia, aph(4)-Ia, 
arr-3, blaOXA-1, bleO, catB3, 
cmlA1, floR, aac(6’)-Ib-
cr5, oqxA, oqxB, sul1, sul2, 
sul3, tet(B)

18 / China: Shanghai 2012 GCA_044318665.1

shrimp S. enterica aadA1, aadA2, aph(3’)-
Ia, blaTEM-1, dfrA12, 
sul2, sul3, cmlA1, floR, 
qnrB19, tet(A), tet(M)

12 frozen shrimp Ecuador 2022 GCA_024423175.1
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E. coli [69, 73], and mcr-9.1 [27] and mcr-10 (GenBank 
Accession No. NZ_JADOZA010000047.1) were also 
found in enterobacteria (Table 3). Studies have revealed 
that diverse subtypes of the MCR family might originate 
from precursor genes on the chromosomes of bacteria, 
such as Moraxella spp. [68], Aeromonas spp. [74], and 
Shewanella spp. [75], implying that certain aquatic path-
ogens are intrinsically resistant to colistin and contribute 

to the dissemination of colistin resistance through the 
aquaculture sector [75, 76].

The emergence and widespread dissemination of 
Tet(X4)-degrading enzymes and a novel efflux pump 
have attracted much attention in recent years [28, 70]. 
The tet(X4) gene, which is located on a plasmid and 
confers high levels of tigecycline resistance, was first 
detected in animal samples in 2019 [77]. Since then, 

Table 2  (continued)

Host Foodborne-
pathogen

Genotype Number of 
resistance 
genes carrying

Isolation source Location Collection year Assembly No.

crab S. enterica aac(3)-IVa, aadA1, 
aph(3’)-Ia, aph(4)-Ia, 
dfrA14, floR, sul1, tet(A)

8 crab meat jumbo 
lump

USA 2018 GCA_004224865.1

fish V. parahaemo-
lyticus

aph(3’’)-Ib, aph(6)-Id, 
blaCARB-18, catC, sul2, 
tet(34), tet(35), tet(59)

8 freshwater food China 2020 GCA_045007075.1

shrimp V. parahaemo-
lyticus

ant(2’’)-Ia, aph(3’)-Ia, 
aph(3’’)-Ib, aph(6)-Id, 
arr-2, blaCARB-18, blaVEB-1, 
catC, floR, dfrA31, ere(A), 
qnrVC1, sul2, tet(34), 
tet(35), tet(C)

16 / Indonesia 2020 GCA_023313035.1

shellfish V. parahaemo-
lyticus

aph(3’’)-Ib, aph(6)-Id, 
blaCARB-18, blaGMA-1, 
catC, dfrA46, sul2, floR, 
qnrVC6, tet(34), tet(35), 
tet(B), tet(M)

13 / China: Liaoning 2015 GCA_028472865.1

crab V. parahaemo-
lyticus

aph(3’’)-Ib, aph(6)-Id, 
blaCARB-18, blaCTX-M-15, 
catC, dfrA23, dfrA46, sul2, 
qnrVC6, tet(34), tet(35), 
tet(A)

12 / Germany 2017 GCA_020741135.1

fish Vibrio vulnificus catB, floR, sul2, tet(34), 
tet(35), tet(59), varG

7 freshwater fish China: Shanghai 2018 GCA_032050495.1

shrimp Staphylococcus 
aureus

aph(2’’)-Ia, ant(6)-Ia, 
aph(3’)-IIIa, dfrG, fosB, 
mecA, mepA, mph(C), 
msr(A), sat4, tet(38)

11 / India: Alappuzha, 
Kerala

2019 GCA_024668545.2

crab S. aureus ant(6)-Ia, aph(3’)-IIIa, 
fosB, mecA, mecR1, mepA, 
mph(C), msr, sat4, tet(38)

10 fresh crab meat USA: MD 2024 GCA_044400285.1

fish S. aureus ant(6)-Ia, aph(3’)-IIIa, 
erm(C), fexA, fosY, mepA, 
sat4, tet(38), tet(K)

9 / China 2024 GCA_041923585.1

fish Listeria monocy-
togenes

fosX, vga(G), tet(M) 3 smoked fish dip 
cajun style

USA: Florida 2005 GCA_004572115.1

shellfish L. monocytogenes fosX, vga(G), tet(M) 3 / USA: RI 2014 GCA_004445175.1

crab L. monocytogenes fosX, vga(G), tet(M) 3 jonah crab meat USA: RI 2014 PDT000034733.3

shrimp L. monocytogenes fosX, vga(G) 2 frozen raw shrimp Indonesia 2020 GCA_016434905.1

shrimp Campylobacter 
jejuni

aph(3’)-I, blaCMY-65, blaGIL, 
catA

4 / USA: MO 2019 GCA_022967615.1

shellfish C. jejuni blaOXA-184, tet(O) 2 / France 2017 GCA_032797205.1

fish Clostridum botu-
linum

bla, catA, cfr, cplR, fosX, lsa 6 retail fish market India: Kerala, 
Cochin

2004 GCA_003017225.1
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tet(X4) has been identified in food-borne Enterobacte-
riaceae from humans and terrestrial animals. Recently, 
it was reported in a strain of E. coli isolated from the 
intestines of commercial shrimp sold in a local seafood 
market in China [29], suggesting that aquatic products 
may be contaminated with tigecycline-resistant food-
borne bacteria. In Gram-negative bacteria, resistance 
to tigecycline can also be caused by overexpression 
of efflux pump genes. In 2020, Chinese scientists first 
reported a novel plasmid-mediated efflux pump gene 
cluster, namely TMexCD1-TOprJ1, in K. pneumoniae 
of chicken-origin [78]. Subsequently, six variants of the 
cluster were detected in a variety of important pathogens 
of humans, terrestrial animals, food, and sewage [79]. 
However, the cluster was found to be less prevalent in 
aquatic animals than in, with current reports limited to 
Aeromonas isolated from fish [70, 71] and Pseudomonas 
putida isolated from shrimp (GenBank Accession No. 
NZ_JBFNXZ010000012) (Table 2).

Vancomycin and linezolid are typically employed in 
clinical settings to treat severe infections caused by mul-
tidrug-resistant Gram-positive bacteria. To date, nine 
genotypes of the vancomycin resistance gene (van) fam-
ily have been identified in Enterococcus from different 
sources [80]. Among them, vanA and vanB are preva-
lent in Enterococcus isolated from the intestinal tract of 
aquatic animals [33] (Table 3).

Linezolid belongs to the oxazolidinone class, which was 
first introduced to China in 2007 and is regarded as the 
last resort for treating serious infections [81]. In 2015, 
Wang et al. [82] first reported the optrA gene in Entero-
coccus isolated from animals and humans in China. This 
gene belongs to the adenosine triphosphate-binding box 
transporter superfamily effector system and mediates 
multiple drug resistance. In our search of the Micro-
BIGG-E database, optrA was detected in 10 strains of 
Streptococcus agalactiae from tilapia fillets sold in Sin-
gapore supermarkets in 2015 (GenBank Accession No. 
DASIHH010000019.1). This gene has also been detected 
in Enterococcus and Staphylococcus isolated from aquatic 
products worldwide in recent years [32, 33].

With the extensive application of antibiotics, the 
aforementioned clinically significant ARGs are car-
ried by pathogen-infected patients, but can also be 
detected in food animals and the natural environment, 
suggesting that these ARGs have been widely dissemi-
nated. Although the detection rate of these newly dis-
covered ARGs remains low in food animals and the 
environment, most could be easily transferred to other 
microorganisms via plasmids, and possibly through 
the food chain, thereby increasing the threat to human 
health [53, 75, 83, 84]. Further research concerning the 
possible carriage of such ARGs by aquatic animals is 

necessary, and should emphasize the genomic related-
ness of aquatic foodborne pathogens and the factors 
influencing bacterial contamination of aquatic envi-
ronments and products.

Solutions and strategies to mitigate resistance 
in aquaculture
AMR poses a public health challenge for populations 
worldwide. Government entities, scientific research insti-
tutions, and private enterprises have started moving for-
ward with plans to mitigate the risks of AMR to crucial 
aquaculture industries and to protect human and animal 
health. Below, we outline three main approaches that 
have been taken in China specifically.

1)	 In terms of government actions, legislative measures, 
such as the regulation of antibiotics and the develop-
ment of guidelines for their rational use in aquacul-
ture, have been initiated to strengthen the supervi-
sion of antibiotic management. National surveillance 
to monitor the prevalence of AMR of aquatic path-
ogens has been carried out since 2015, covering 16 
provinces. Activities to enhance public awareness of 
AMR and promote the rational use of antimicrobi-
als have also been undertaken through publicity and 
educational campaigns.

2)	 In scientific research institutes and universities, the 
prevalence, mechanisms, and transmission of AMR 
in aquaculture have been studied, aiming to com-
prehend the epidemiological characteristics and 
trends of AMR in different regions. Novel, rapid, 
and precise diagnostic technologies have been 
employed for the prevention and control of animal 
diseases. In addition, to reduce the usage of anti-
biotics, research is underway to develop multiple 
green and safe alternatives to antimicrobials, such 
as vaccines, Chinese herbal medicines, microeco-
logical preparations, bacteriophages, and enzyme 
preparations. Furthermore, it is crucial that we 
create effective technologies to alleviate the selec-
tive pressure on bacteria to develop antimicrobial 
resistance (including ARGs), within both living 
organisms and environmental cultures.

3)	 Regarding aquaculture enterprises, good aquaculture 
and biosecurity practices are needed for safe, high-
quality aquatic products. Regular, strict hygienic 
practices are also indispensable for reducing con-
tamination and transmission of pathogens. Further-
more, enhanced water quality health management 
is crucial for increasing aquaculture production and 
profitability.
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Conclusions
This review focused on the sources of AMR and the 
occurrence and distribution of ARGs from diseased 
aquatic animals and contaminated aquatic products. 
Antimicrobial use and other human activities have con-
tributed to the development and spread of ARB and 
ARGs. Following increased understanding and awareness 
of AMR in aquaculture, government entities, research 
institutions, private enterprises, farmers, and other stake-
holders are taking action to mitigate the transmission of 
AMR, thereby enhancing human and animal health as 
well as ecological sustainability.
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