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Abstract 

The rise in antibiotic resistance among Gram-negative bacteria poses significant challenges to global health. This 
study evaluates the in vitro efficacy of tigecycline, omadacycline, and eravacycline against clinical isolates harbor-
ing the mobile tigecycline resistance genes tet(X4) and tet(A). A total of 175 clinical strains collected between 1999 
and 2023 were analyzed. Resistance genes, including tet(X4) and tet(A), were determined using Polymerase chain 
reaction (PCR). Minimum inhibitory concentrations (MICs) were determined using the broth microdilution method. 
Eravacycline exhibited significantly lower MIC values than those of tigecycline for Escherichia coli carrying tet(X4) 
(P < 0.0001), despite similar resistance rates. Omadacycline consistently displayed the highest MIC values, indicat-
ing reduced potency. In contrast, Klebsiella pneumoniae carrying tet(A) showed higher MIC values for eravacycline 
than tigecycline. Universal resistance was observed in Enterobacter cloacae carrying tet(A). Eravacycline demonstrated 
superior in vitro efficacy, particularly against E. coli carrying tet(X4), underscoring its potential as a therapeutic option 
for multidrug-resistant infections. MIC values should complement resistance rates in clinical decision-making, and fur-
ther studies are warranted to validate eravacycline’s clinical utility.
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Introduction
The rise in antibiotic resistance represents a formidable 
challenge to global health, with the World Health Organ-
ization designating antibiotic resistance as a principal 
threat to human health [1]. Multidrug resistance refers to 
bacteria that are not susceptible to three or more classes 
of clinically used antimicrobials [2]. The increasing prev-
alence of antibiotic resistance in Gram-negative bacte-
ria, particularly through mobile resistance genes such as 
tet(X4) and tet(A), presents a major global health chal-
lenge. These genes, associated with tetracycline resist-
ance, are especially concerning because of their ability to 
spread rapidly across bacterial populations.

Tetracyclines are natural products of actinomycetes 
that were first reported in 1948 [3]. In the late 1980s, 
structural optimization of tetracycline led to the devel-
opment of several semisynthetic derivatives such as 
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doxycycline and minocycline, which are second-gener-
ation tetracyclines [4]. Subsequent modifications to the 
tetracycline side chain resulted in the production of the 
third-generation tetracycline tigecycline in 1993. To date, 
fourth-generation tetracyclines, such as omadacycline 
and eravacycline, have been developed. The structural 
and physicochemical components pivotal in the discov-
ery of modern tetracycline have been explored [5].

Tigecycline is a semisynthetic glycylcycline, a derivative 
of minocycline, which overcomes resistance mediated by 
efflux pumps and ribosomal protective proteins, result-
ing in broader  and more effective antimicrobial activity 
than that of other tetracyclines [6]. Owing to its broad-
spectrum antibacterial activity, it was approved by the 
U.S. Food and Drug Administration (FDA) in 2005 and is 
used to treat complicated intra-abdominal infections [7]. 
It was subsequently approved for the treatment of com-
munity-acquired bacterial pneumonia  (CABP) in 2008 
[8] and was approved for marketing in China in 2010 [9]. 
Currently, tigecycline is approved as adult monotherapy 
for the treatment of complicated skin and soft structure 
infections (cSSTIs), complicated intra-abdominal infec-
tions (cIAIs), and CABP [10].

Eravacycline is structurally similar to tigecycline but 
has two changes in the D-ring of the tetracycline core 
and, like other tetracyclines, it  inhibits bacterial protein 
synthesis by binding to the 30S ribosomal subunit [11]. 
Eravacycline, approved by the FDA for marketing in 
2018 and available in China since 2023, has received FDA 
approval for the treatment of cIAIs [12]. Eravacycline 
has been used to treat serious bacterial infections caused 
by a broad spectrum of Gram-negative, Gram-positive, 
aerobic, and anaerobic pathogens, including multidrug-
resistant microorganisms [13]. Eravacycline exhibited a 
superior gastrointestinal safety profile among the tetra-
cycline-glycylcycline class [14]. The use of eravacycline 
presents a promising approach for the management of 
infections caused by multidrug-resistant organisms, par-
ticularly in cases where traditional antibiotics fail [14].

Omadacycline was FDA-approved for marketing in 
2018 and has been available in China since 2023 for the 
treatment of acute bacterial cSSTIs and CABP and can be 
administered intravenously or orally [15]. Omadacycline 
was the first aminomethyl tetracycline to enter the clini-
cal use [16]. This antibiotic is structurally based on mino-
cycline, with an aminomethyl group at the C9 position 
[17]. Omadacycline resists efflux pumps and ribosomal 
protection mechanisms [18].

Resistance to tigecycline involves several mechanisms, 
including the overexpression of efflux pumps, muta-
tions in ribosomal protein genes, and the production 
of tigecycline-inactivating enzymes. Specifically, genes 
encoding efflux pumps, such as tet(A), OqxAB, and 

AcrAB-TolC [19–21], confer resistance by actively expel-
ling tetracycline molecules from bacterial cells, thereby 
mediating high levels of tigecycline resistance [22]. 
Mutations in regulatory genes, such as ramR, marR, and 
other genes, can affect the expression of efflux pumps, 
which can indirectly lead to tigecycline resistance [23, 
24]. In contrast, the tet(X4) gene family encodes tigecy-
cline-inactivating enzymes, which significantly increase 
the minimum inhibitory concentration (MIC) values for 
tigecycline in bacteria harboring this gene [25]. Among 
these, plasmid-borne genes encoding transferable tige-
cycline resistance, including tet(X) variants (particularly 
tet(X3) and tet(X4)) [26] and tet(A) variants, are particu-
larly concerning [26, 27].

The current understanding of the efficacy of third- and 
fourth-generation tetracyclines in combatting clinical 
strains is limited. To address this issue, we evaluated the 
in  vitro antimicrobial effects of tigecycline, omadacy-
cline, and eravacycline against clinical isolates of Escheri-
chia coli, Klebsiella pneumoniae, Acinetobacter spp., 
and Enterobacter cloacae harboring mobile tigecycline 
resistance genes, including tet(X4) and tet(A). This study 
seeks not only to underscore the therapeutic potential of 
these novel antibiotics but also to chart a course toward 
reclaiming the upper hand in our ongoing battle against 
antibiotic resistance.

Results
A total of 175 Gram-negative clinical strains were col-
lected, including 97 E. coli, 26 K. pneumoniae, 34 Acineto-
bacter spp., and 18 E. cloacae. The PCR results indicated 
that each strain harbored either the wild-type tet(X4) or 
the wild-type tet(A) or lacked mobile tigecycline resist-
ance genes entirely. Among the 175 Gram-negative 
strains, the resistance rates to tigecycline, omadacycline, 
and eravacycline were comparable across species, with E. 
coli showing resistance rates of 55.7%, 52.6%, and 58.8%, 
respectively. Resistance was strongly associated with the 
presence of tet(X4) and tet(A), as carriers of these genes 
exhibited significantly higher resistance rates than those 
of noncarriers.

The MIC50 and MIC90 values of tigecycline, omadacy-
cline, and eravacycline were determined to assess their 
potencies against the tested bacterial isolates (Table  1). 
Omadacycline exhibited significantly higher MIC val-
ues than tigecycline and eravacycline. Specifically, era-
vacycline exhibited significantly lower MIC values 
(3.81 ± 1.63  μg/mL) than tigecycline (9.68 ± 5.63  μg/mL) 
in E. coli harboring tet(X4) (P < 0.0001) (Fig.  1A), indi-
cating a potential advantage in treating these resistant 
strains. In contrast, omadacycline consistently displayed 
the highest MIC values across all species, suggesting 
reduced efficacy relative to the other two antibiotics. 
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Fig. 1  Minimum inhibitory concentration (MIC) distribution of tigecycline and eravacycline in strains carrying mobile tigecycline resistance genes: 
A Escherichia coli, B Klebsiella pneumoniae, and C Enterobacter cloacae. Statistical significance was determined using the Mann–Whitney test, 
with a significance threshold of P < 0.05. For P values, ns (not significant) indicates P > 0.05; **, P ≤ 0.01; ****, P ≤ 0.0001
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Notably, K. pneumoniae carrying tet(A) showed higher 
MIC values for eravacycline (4.89 ± 4.34  μg/mL) than 
for tigecycline (3.81 ± 1.63 μg/mL) (P = 0.0097) (Fig. 1B), 
underscoring the influence of resistance genes on antibi-
otic potency.

For E. cloacae strains carrying tet(A), the resistance 
rates to all three antibiotics were universally high (100%), 
with no significant difference in the MIC values between 
eravacycline (4 ± 2.19  μg/mL) and tigecycline (4 ± 0  μg/
mL) (P = 0.222) (Fig.  1C). Acinetobacter spp., which 
lacked mobile tigecycline resistance genes, exhibited 
comparable MIC values for eravacycline (2.52 ± 1.73 μg/
mL) and tigecycline (1.89 ± 1.53  μg/mL) (P = 0.352), fur-
ther supporting the role of resistance genes in determin-
ing antibiotic susceptibility.

Further analysis was conducted on four species that 
lacked mobile tigecycline resistance genes (Fig.  2). 
Among E. coli without tet(X4), the resistance rates to 
tigecycline, eravacycline, and omadacycline did not 
significantly differ (P = 0.604). However, the MIC val-
ues varied significantly (P < 0.0001), with omadacycline 
(4.06 ± 4.99  μg/mL) exhibiting the highest MIC values, 
followed by eravacycline (0.47 ± 0.39 μg/mL) and tigecy-
cline (0.2 ± 0.23 μg/mL). For K. pneumoniae and E. cloa-
cae without resistance genes, no significant differences 
were observed in either the resistance rates or the MIC 
values between tigecycline and eravacycline (P > 0.05). 
In contrast, the MIC values for omadacycline in Aci-
netobacter spp. (13.94 ± 11.43  μg/mL) and E. cloacae 
(5.08 ± 4.98  μg/mL) were significantly higher (P < 0.05), 
indicating reduced efficacy.

Fig. 2  MIC distribution of tigecycline, omadacycline, and eravacycline in strains carrying no mobile tigecycline resistance genes: A Escherichia 
coli, B Klebsiella pneumoniae, C Acinetobacter spp., and D Enterobacter cloacae. Statistical significance was determined using the Kruskal–Wallis test, 
with statistical significance set at P < 0.05. For P values, ns (not significant) indicates P > 0.05; **, P ≤ 0.01; ****, P ≤ 0.0001
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Across all species, omadacycline exhibited significantly 
higher MIC values than tigecycline and eravacycline 
(P < 0.05), implying reduced in  vitro potency. In con-
trast, the resistance rates among species were compara-
ble across antibiotics (P = 0.701 for E. coli, P = 0.428 for 
K. pneumoniae, and P = 0.701 for E. cloacae). This find-
ing suggests that resistance rates alone may not fully 
capture the differences in antibiotic efficacy. While resist-
ance rates provide a population-level perspective on 
susceptibility, MIC values offer a more precise measure 
of antibiotic potency, particularly for strains with bor-
derline susceptibility or resistance. The lower MIC val-
ues observed for eravacycline suggest that it may require 
lower doses to achieve therapeutic efficacy than omada-
cycline, highlighting its potential as a more potent treat-
ment option despite the similar resistance profiles.

While the resistance rates did not significantly differ 
across antibiotics (P = 0.500 for E. coli), the MIC values 
provided important insights into the relative potency of 
each drug. Eravacycline’s lower MIC values in tet(X4)-
positive E. coli suggest a clinical advantage in targeting 
these resistant strains. While resistance rates provide a 
useful overview of antibiotic susceptibility in a popula-
tion, MIC values enable a more granular understanding 
of the antibiotic’s efficacy, particularly in strains with spe-
cific resistance genes such as tet(X4). For example, erava-
cycline demonstrated lower MIC values than tigecycline 
in E. coli harboring tet(X4), highlighting its potential clin-
ical utility despite the comparable resistance rates.

Discussion
Initially, tetracyclines were widely used in human and 
animal therapy for their broad-spectrum antimicrobial 
activity and were recommended as first-line therapeu-
tic options for a variety of indications. However, with 
the increase in drug resistance, tetracyclines have been 
continuously updated and optimized. Currently, three 
third-generation tetracyclines (tigecycline, eravacycline, 
and omadacycline) have been developed to effectively 
overcome the most common resistance mechanisms. 
This study provides a comprehensive analysis of the 
antimicrobial efficacy of tigecycline, omadacycline, and 
eravacycline against multidrug-resistant Gram-negative 
bacteria. While the resistance rates across antibiotics 
were similar, eravacycline exhibited consistently lower 
MIC values, particularly in E. coli strains harboring 
tet(X4). These findings underscore eravacycline’s poten-
tial as a potent therapeutic option for treating infections 
caused by multidrug-resistant bacteria.

In a previous global study, Enterobacteriaceae showed 
a high susceptibility to eravacycline, with rates of 98.8% 
in E. coli, 90.6% in Klebsiella spp., 94.6% in Citrobac-
ter spp., and 89.6% in Enterobacter spp. [28]. Another 

study from France investigated the in  vitro antimi-
crobial activity of tigecycline, with susceptibility rates 
of 99.4% for E. coli and 87.4% for K. pneumoniae [29]. 
An in  vitro antimicrobial activity study suggested that 
the susceptibility rate to omadacycline was 87.3% for 
E. coli and 61.8% for K. pneumoniae at a breakpoint of 
MIC ≤ 4 μg/mL [30].

The MIC range observed for omadacycline was signifi-
cantly higher than those for tigecycline and eravacycline, 
suggesting reduced in  vitro potency compared with the 
potencies of the other two antibiotics. While omadacy-
cline is a fourth-generation tetracycline, these findings 
align with previous studies, such as a study conducted in 
Taiwan [31]. In contrast, eravacycline’s consistently lower 
MIC values reinforce its potential as a preferred option 
for multidrug-resistant infections, particularly in strains 
carrying resistance genes.

Although the resistance rates between tigecycline and 
eravacycline were similar, eravacycline’s consistently 
lower MIC values, particularly in E. coli strains har-
boring tet(X4), highlight its potential as a more potent 
therapeutic option. The lower MIC values suggest that 
eravacycline can achieve bacterial inhibition at lower 
concentrations, reducing the likelihood of resistance 
development and minimizing the need for higher dos-
ing. However, the clinical utility of MIC values should be 
assessed alongside pharmacokinetic and pharmacody-
namic data to inform treatment decisions.

Animal studies have demonstrated that eravacycline 
achieves higher tissue penetration than tigecycline, sup-
porting its potential utility in treating resistant infections 
[32, 33]. In clinical settings, tigecycline often requires 
dose doubling to achieve adequate tissue concentrations, 
particularly in the lungs, which increases the risk of gas-
trointestinal side effects [34]. In contrast, eravacycline 
maintains effective concentrations at standard doses with 
fewer adverse effects. These pharmacokinetic advantages, 
combined with eravacycline’s consistently lower MIC 
values, suggest its potential as a safer and more effec-
tive option for multidrug-resistant infections. Addition-
ally, eravacycline has shown synergistic effects with other 
antibiotics, making it suitable for managing complex 
infections commonly encountered in intensive care unit 
patients [35].

Therefore, the absence of a significant difference in the 
resistance rates between eravacycline and tigecycline did 
not diminish the clinical relevance of the MIC values. 
The lower MIC values for eravacycline suggest that it may 
be a more potent therapeutic option in certain cases, par-
ticularly for tet(X4)-positive E. coli, in which a lower dose 
of eravacycline may achieve better outcomes than those 
with higher doses of tigecycline.
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Resistance genes play a critical role in determin-
ing antibiotic efficacy. For example, the presence of 
tet(X4) in E. coli was associated with high resistance 
rates to all antibiotics; however, eravacycline consist-
ently maintained lower MIC values than those of tige-
cycline, suggesting it may partially overcome certain 
resistance mechanisms. Conversely, in K. pneumoniae 
carrying tet(A), eravacycline displayed higher MIC 
values than those of tigecycline, emphasizing the com-
plexity of gene–drug interactions and the importance 
of genetic profiling in guiding therapy.

The universal resistance observed in E. cloacae car-
rying tet(A) toward all three antibiotics is alarming, 
highlighting the urgent need for novel antimicro-
bial strategies. This resistance pattern underscores 
the broader challenges of antibiotic resistance, which 
transcends clinical practice and requires a unified 
approach.

Integrating a One Health perspective, it is evi-
dent that the fight against antibiotic resistance 
requires a unified approach that spans the human, 
animal, and environmental health sectors [36]. The 
spread of antibiotic resistance does not recognize 
the boundaries between these domains, necessitat-
ing comprehensive strategies that address antibiotic 
use and microbial ecosystems as a whole [37]. Col-
laborative efforts under the One Health umbrella can 
lead to more sustainable antibiotic use practices and 
the development of policies that mitigate the risk of 
resistance spreading across different environments 
and populations [37, 38].

While the introduction of newer antibiotics such as 
omadacycline and eravacycline represents a signifi-
cant investment in combating resistance, their cost-
effectiveness depends on clinical efficacy. The distinct 
efficacy profile of eravacycline, particularly against 
tet(X4)-positive E. coli, suggests that it could play a 
crucial role in managing resistant infections if its cost 
remains reasonable.

While this study provides valuable insights into the 
comparative efficacy of eravacycline and tigecycline, 
several limitations must be acknowledged. First, this 
study is based on in  vitro data, and the results may 
not fully reflect the in  vivo activity of these antibiot-
ics. Additionally, this study focuses on MIC values as 
an important measure of antibiotic efficacy; however, 
resistance rates, which provide a population-level per-
spective, were not thoroughly analyzed in the context 
of clinical decision-making. MIC values offer strain-
specific insights, while resistance rates are critical for 
understanding broader trends. Future studies should 
explore the integration of these two metrics to better 
guide therapeutic decisions.

Conclusion
In conclusion, this study highlights that eravacycline has 
superior efficacy compared with tigecycline and omada-
cycline, particularly against E. coli strains harboring the 
tet(X4) gene. While the resistance rates were comparable 
between tigecycline and eravacycline, the consistently 
lower MIC values for eravacycline underscore its poten-
tial as a potent therapeutic option for multidrug-resistant 
infections. In contrast, omadacycline’s higher MIC val-
ues suggest limited utility in severe infections caused by 
resistant pathogens.

These findings emphasize the importance of incor-
porating MIC data alongside resistance rates to guide 
clinical decisions. However, the high level of  resistance 
observed in E. cloacae carrying tet(A) highlights the 
urgent need for novel therapeutic strategies and ongoing 
surveillance of resistance patterns.

Future research should validate eravacycline’s efficacy 
in clinical settings and assess its cost-effectiveness to 
ensure accessible treatment options for managing multi-
drug-resistant infections.

Materials and methods
Strain collection and tigecycline resistance gene 
identification
Strains were randomly selected from those retained in 
the Second Hospital of Zhejiang University School of 
Medicine between 1999 and 2023. Species identifica-
tion was performed by matrix-assisted laser desorption/
ionization time of flight mass spectrometry (MALDI-
TOF MS) (Bruker Daltonik GmbH, Bremen, Germany). 
Mobile tigecycline resistance genes were identified by 
PCR targeting tet(X4) and tet(A), using the following 
primers: tet(X4)-F primer 5’-TGA​ACC​TGG​TAA​GAA​
GAA​GTG-3’, tet(X4)-R primer 5’-CAG​ACA​ATA​TCA​
AAG​CAT​CCA-3’; tet(A)-F primer 5’-GTC​AGC​TAC​CTT​
CTC​GGC​AC-3’, tet(A)-R primer 5’-GAT​GAT​TAA​CGC​
ACT​CGC​CG-3’. The PCR products were validated by 
Sanger sequencing.

Antimicrobial susceptibility testing
The MICs of tigecycline, omadacycline, and eravacycline 
were determined by the broth microdilution method. 
The medium used was Mueller–Hinton broth  (Hang-
zhou Binhe Microorganism Reagent Co.  Ltd., Hang-
zhou, China), incubated at 37  °C for 18–24  h. E. coli 
ATCC 25922 was used as the quality control strain. The 
interpretation breakpoints were based on the European 
Committee on Antimicrobial Susceptibility Testing (era-
vacycline and tigecycline) [39] and the U.S. FDA (omada-
cycline) [40].
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Statistical analysis
Statistical analysis was performed using SPSS 26.0 (Inter-
national Business Machines Corporation, Armonk, New 
York, USA)  with normality and log-normality tests, 
Mann–Whitney tests, and the Kruskal–Wallis test, and 
statistical significance was set at P < 0.05. GraphPad 
Prism 9.5 (GraphPad Software, Boston, MA, USA)  was 
used for figure illustration.
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